Matching Items (162)
Filtering by

Clear all filters

153272-Thumbnail Image.png
Description
Hydrogen sulfide (H2S) has been identified as a potential ingredient for grain boundary passivation of multicrystalline silicon. Sulfur is already established as a good surface passivation material for crystalline silicon (c-Si). Sulfur can be used both from solution and hydrogen sulfide gas. For multicrystalline silicon (mc-Si) solar cells, increasing efficiency

Hydrogen sulfide (H2S) has been identified as a potential ingredient for grain boundary passivation of multicrystalline silicon. Sulfur is already established as a good surface passivation material for crystalline silicon (c-Si). Sulfur can be used both from solution and hydrogen sulfide gas. For multicrystalline silicon (mc-Si) solar cells, increasing efficiency is a major challenge because passivation of mc-Si wafers is more difficult due to its randomly orientated crystal grains and the principal source of recombination is contributed by the defects in the bulk of the wafer and surface.

In this work, a new technique for grain boundary passivation for multicrystalline silicon using hydrogen sulfide has been developed which is accompanied by a compatible Aluminum oxide (Al2O3) surface passivation. Minority carrier lifetime measurement of the passivated samples has been performed and the analysis shows that success has been achieved in terms of passivation and compared to already existing hydrogen passivation, hydrogen sulfide passivation is actually better. Also the surface passivation by Al2O3 helps to increase the lifetime even more after post-annealing and this helps to attain stability for the bulk passivated samples. Minority carrier lifetime is directly related to the internal quantum efficiency of solar cells. Incorporation of this technique in making mc-Si solar cells is supposed to result in higher efficiency cells. Additional research is required in this field for the use of this technique in commercial solar cells.
ContributorsSaha, Arunodoy, Ph.D (Author) / Tao, Meng (Thesis advisor) / Vasileska, Dragica (Committee member) / Goryll, Michael (Committee member) / Arizona State University (Publisher)
Created2014
151142-Thumbnail Image.png
Description
This dissertation addresses challenges pertaining to multi-junction (MJ) solar cells from material development to device design and characterization. Firstly, among the various methods to improve the energy conversion efficiency of MJ solar cells using, a novel approach proposed recently is to use II-VI (MgZnCd)(SeTe) and III-V (AlGaIn)(AsSb) semiconductors lattice-matched on

This dissertation addresses challenges pertaining to multi-junction (MJ) solar cells from material development to device design and characterization. Firstly, among the various methods to improve the energy conversion efficiency of MJ solar cells using, a novel approach proposed recently is to use II-VI (MgZnCd)(SeTe) and III-V (AlGaIn)(AsSb) semiconductors lattice-matched on GaSb or InAs substrates for current-matched subcells with minimal defect densities. CdSe/CdTe superlattices are proposed as a potential candidate for a subcell in the MJ solar cell designs using this material system, and therefore the material properties of the superlattices are studied. The high structural qualities of the superlattices are obtained from high resolution X-ray diffraction measurements and cross-sectional transmission electron microscopy images. The effective bandgap energies of the superlattices obtained from the photoluminescence (PL) measurements vary with the layer thicknesses, and are smaller than the bandgap energies of either the constituent material. Furthermore, The PL peak position measured at the steady state exhibits a blue shift that increases with the excess carrier concentration. These results confirm a strong type-II band edge alignment between CdSe and CdTe. The valence band offset between unstrained CdSe and CdTe is determined as 0.63 eV±0.06 eV by fitting the measured PL peak positions using the Kronig-Penney model. The blue shift in PL peak position is found to be primarily caused by the band bending effect based on self-consistent solutions of the Schrödinger and Poisson equations. Secondly, the design of the contact grid layout is studied to maximize the power output and energy conversion efficiency for concentrator solar cells. Because the conventional minimum power loss method used for the contact design is not accurate in determining the series resistance loss, a method of using a distributed series resistance model to maximize the power output is proposed for the contact design. It is found that the junction recombination loss in addition to the series resistance loss and shadowing loss can significantly affect the contact layout. The optimal finger spacing and maximum efficiency calculated by the two methods are close, and the differences are dependent on the series resistance and saturation currents of solar cells. Lastly, the accurate measurements of external quantum efficiency (EQE) are important for the design and development of MJ solar cells. However, the electrical and optical couplings between the subcells have caused EQE measurement artifacts. In order to interpret the measurement artifacts, DC and small signal models are built for the bias condition and the scan of chopped monochromatic light in the EQE measurements. Characterization methods are developed for the device parameters used in the models. The EQE measurement artifacts are found to be caused by the shunt and luminescence coupling effects, and can be minimized using proper voltage and light biases. Novel measurement methods using a pulse voltage bias or a pulse light bias are invented to eliminate the EQE measurement artifacts. These measurement methods are nondestructive and easy to implement. The pulse voltage bias or pulse light bias is superimposed on the conventional DC voltage and light biases, in order to control the operating points of the subcells and counterbalance the effects of shunt and luminescence coupling. The methods are demonstrated for the first time to effectively eliminate the measurement artifacts.
ContributorsLi, Jingjing (Author) / Zhang, Yong-Hang (Thesis advisor) / Tao, Meng (Committee member) / Schroder, Dieter (Committee member) / Vasileska, Dragica (Committee member) / Arizona State University (Publisher)
Created2012
157334-Thumbnail Image.png
Description
Lithium metal is a promising anode for the next generation lithium batteries owing to its high capacity (3860 mAh g-1) and the lowest negative reduction potential (-3.04 V). Commercial produced lithium anodes have a native rough surface which deteriorates the cycling performance of the battery. Here, an attempt has been

Lithium metal is a promising anode for the next generation lithium batteries owing to its high capacity (3860 mAh g-1) and the lowest negative reduction potential (-3.04 V). Commercial produced lithium anodes have a native rough surface which deteriorates the cycling performance of the battery. Here, an attempt has been made to deposit lithium on copper from an electrolytic cell consisting of simple electrolyte of pyridine and lithium chloride at room temperature. Water is known to react aggressively with the lithium metal, however in the electrochemical plating process, it has a significant beneficial effect in catalyzing the electrochemical reactions. The effect of trace amounts of water was investigated in air as well as in controlled atmosphere of argon, nitrogen, breathing grade dry air and ultra-zero dry air. The electrochemical products examined by Fourier transform infrared spectroscopy revealed the deposition might require the reduction of pyridine to facilitate the reduction of the lithium salt. Purity of the lithium film was determined by inductively coupled plasma mass spectrometry.
ContributorsPode, Gayatri (Author) / Newman, Nathan (Thesis advisor) / Marshall, Daniel (Committee member) / Tao, Meng (Committee member) / Arizona State University (Publisher)
Created2019
131510-Thumbnail Image.png
Description
Engineering is a multidisciplinary field with a variety of applications. However, since there are so many disciplines of engineering, it is often challenging to find the discipline that best suits an individual interested in engineering. Not knowing which area of engineering most aligns to one’s interests is challenging when deciding

Engineering is a multidisciplinary field with a variety of applications. However, since there are so many disciplines of engineering, it is often challenging to find the discipline that best suits an individual interested in engineering. Not knowing which area of engineering most aligns to one’s interests is challenging when deciding on a major and a career. With the development of the Engineering Interest Quiz (EIQ), the goal was to help individuals find the field of engineering that is most similar to their interests. Initially, an Engineering Faculty Survey (EFS) was created to gather information from engineering faculty at Arizona State University (ASU) and to determine keywords that describe each field of engineering. With this list of keywords, the EIQ was developed. Data from the EIQ compared the engineering students’ top three results for the best engineering discipline for them with their current engineering major of study. The data analysis showed that 70% of the respondents had their major listed as one of the top three results they were given and 30% of the respondents did not have their major listed. Of that 70%, 64% had their current major listed as the highest or tied for the highest percentage and 36% had their major listed as the second or third highest percentage. Furthermore, the EIQ data was compared between genders. Only 33% of the male students had their current major listed as their highest percentage, but 55% had their major as one of their top three results. Women had higher percentages with 63% listing their current major as their highest percentage and 81% listing it in the top three of their final results.
ContributorsWagner, Avery Rose (Co-author) / Lucca, Claudia (Co-author) / Taylor, David (Thesis director) / Miller, Cindy (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131534-Thumbnail Image.png
Description
In the past ten years, the United States’ sound recording industries have experienced significant decreases in employment opportunities for aspiring audio engineers from economic imbalances in the music industry’s digital streaming era and reductions in government funding for career and technical education (CTE). The Recording Industry Association of America reports

In the past ten years, the United States’ sound recording industries have experienced significant decreases in employment opportunities for aspiring audio engineers from economic imbalances in the music industry’s digital streaming era and reductions in government funding for career and technical education (CTE). The Recording Industry Association of America reports promises of music industry sustainability based on increasing annual revenues in paid streaming services and artists’ high creative demand. The rate of new audio engineer entries in the sound recording subsection of the music industry is not viable to support streaming artists’ high demand to engineer new music recordings. Offering CTE programs in secondary education is rare for aspiring engineers with insufficient accessibility to pursue a post-secondary or vocational education because of financial and academic limitations. These aspiring engineers seek alternatives for receiving an informal education in audio engineering on the Internet using video sharing services like YouTube to search for tutorials and improve their engineering skills. The shortage of accessible educational materials on the Internet restricts engineers from advancing their own audio engineering education, reducing opportunities to enter a desperate job market in need of independent, home studio-based engineers. Content creators on YouTube take advantage of this situation and commercialize their own video tutorial series for free and selling paid subscriptions to exclusive content. This is misleading for newer engineers because these tutorials omit important understandings of fundamental engineering concepts. Instead, content creators teach inflexible engineering methodologies that are mostly beneficial to their own way of thinking. Content creators do not often assess the incompatibility of teaching their own methodologies to potential entrants in a profession that demands critical thinking skills requiring applied fundamental audio engineering concepts and techniques. This project analyzes potential solutions to resolve the deficiencies in online audio engineering education and experiments with structuring simple, deliverable, accessible educational content and materials to new entries in audio engineering. Designing clear, easy to follow material to these new entries in audio engineering is essential for developing a strong understanding for the application of fundamental concepts in future engineers’ careers. Approaches to creating and designing educational content requires translating complex engineering concepts through simplified mediums that reduce limitations in learning for future audio engineers.
ContributorsBurns, Triston Connor (Author) / Tobias, Evan (Thesis director) / Libman, Jeff (Committee member) / Department of Information Systems (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
133882-Thumbnail Image.png
Description
Based on James Marcia's theory, identity development in youth is the degree to which one has explored and committed to a vocation [1], [2]. During the path to an engineering identity, students will experience a crisis, when one's values and choices are examined and reevaluated, and a commitment, when the

Based on James Marcia's theory, identity development in youth is the degree to which one has explored and committed to a vocation [1], [2]. During the path to an engineering identity, students will experience a crisis, when one's values and choices are examined and reevaluated, and a commitment, when the outcome of the crisis leads the student to commit to becoming an engineer. During the crisis phase, students are offered a multitude of experiences to shape their values and choices to influence commitment to becoming an engineering student. Student's identities in engineering are fostered through mentoring from industry, alumni, and peer coaching [3], [4]; experiences that emphasize awareness of the importance of professional interactions [5]; and experiences that show creativity, collaboration, and communication as crucial components to engineering. Further strategies to increase students' persistence include support in their transition to becoming an engineering student, education about professional engineers and the workplace [6], and engagement in engineering activities beyond the classroom. Though these strategies are applied to all students, there are challenges students face in confronting their current identity and beliefs before they can understand their value to society and achieve personal satisfaction. To understand student's progression in developing their engineering identity, first year engineering students were surveyed at the beginning and end of their first semester. Students were asked to rate their level of agreement with 22 statements about their engineering experience. Data included 840 cases. Items with factor loading less than 0.6 suggesting no sufficient explanation were removed in successive factor analysis to identify the four factors. Factor analysis indicated that 60.69% of the total variance was explained by the successive factors. Survey questions were categorized into three factors: engineering identity as defined by sense of belonging and self-efficacy, doubts about becoming an engineer, and exploring engineering. Statements in exploring engineering indicated student awareness, interest and enjoyment within engineering. Students were asked to think about whether they spent time learning what engineers do and participating in engineering activities. Statements about doubts about engineering to engineering indicated whether students had formed opinions about their engineering experience and had understanding about their environment. Engineering identity required thought in belonging and self-efficacy. Belonging statements called for thought about one's opinion in the importance of being an engineer, the meaning of engineering, an attachment to engineering, and self-identification as an engineer. Statements about self-efficacy required students to contemplate their personal judgement of whether they would be able to succeed and their ability to become an engineer. Effort in engineering indicated student willingness to invest time and effort and their choices and effort in their engineering discipline.
ContributorsNguyen, Amanda (Author) / Ganesh, Tirupalavanam (Thesis director) / Robinson, Carrie (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133909-Thumbnail Image.png
Description
The field of robotics is rapidly expanding, and with it, the methods of teaching and introducing students must also advance alongside new technologies. There is a challenge in robotics education, especially at high school levels, to expose them to more modern and practical robots. One way to bridge this ga

The field of robotics is rapidly expanding, and with it, the methods of teaching and introducing students must also advance alongside new technologies. There is a challenge in robotics education, especially at high school levels, to expose them to more modern and practical robots. One way to bridge this gap is human-robot interaction for a more hands-on and impactful experience that will leave students more interested in pursuing the field. Our project is a Robotic Head Kit that can be used in an educational setting to teach about its electrical, mechanical, programming, and psychological concepts. We took an existing robot head prototype and further advanced it so it can be easily assembled while still maintaining human complexity. Our research for this project dove into the electronics, mechanics, software, and even psychological barriers present in order to advance the already existing head design. The kit we have developed combines the field of robotics with psychology to create and add more life-like features and functionality to the robot, nicknamed "James Junior." The goal of our Honors Thesis was to initially fix electrical, mechanical, and software problems present. We were then tasked to run tests with high school students to validate our assembly instructions while gathering their observations and feedback about the robot's programmed reactions and emotions. The electrical problems were solved with custom PCBs designed to power and program the existing servo motors on the head. A new set of assembly instructions were written and modifications to the 3D printed parts were made for the kit. In software, existing code was improved to implement a user interface via keypad and joystick to give students control of the robot head they construct themselves. The results of our tests showed that we were not only successful in creating an intuitive robot head kit that could be easily assembled by high school students, but we were also successful in programming human-like expressions that could be emotionally perceived by the students.
ContributorsRathke, Benjamin (Co-author) / Rivera, Gerardo (Co-author) / Sodemann, Angela (Thesis director) / Itagi, Manjunath (Committee member) / Engineering Programs (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134180-Thumbnail Image.png
Description
This creative project created and implemented a seven-day STEM curriculum that ultimately encouraged engagement in STEM subjects in students ages 5 through 11. The activities were incorporated into Arizona State University's Kids' Camp over the summer of 2017, every Tuesday afternoon from 4 to 6 p.m. with each activity running

This creative project created and implemented a seven-day STEM curriculum that ultimately encouraged engagement in STEM subjects in students ages 5 through 11. The activities were incorporated into Arizona State University's Kids' Camp over the summer of 2017, every Tuesday afternoon from 4 to 6 p.m. with each activity running for roughly 40 minutes. The lesson plans were created to cover a myriad of scientific topics to account for varied student interest. The topics covered were plant biology, aerodynamics, zoology, geology, chemistry, physics, and astronomy. Each lesson was scaffolded to match the learning needs of the three age groups (5-6 year olds, 7-8 year olds, 9-11 year olds) and to encourage engagement. "Engagement" was measured by pre- and post-activity surveys approved by IRB. The surveys were in the form of statements where the children would totally agree, agree, be undecided, disagree, or totally disagree with it. To more accurately test engagement, the smiley face Likert scale was incorporated with the answer choices. After implementation of the intervention, two-tailed paired t-tests showed that student engagement significantly increased for the two lesson plans of Aerodynamics and Chemistry.
ContributorsHunt, Allison Rene (Co-author) / Belko, Sara (Co-author) / Merritt, Eileen (Thesis director) / Ankeny, Casey (Committee member) / Division of Teacher Preparation (Contributor) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12
134312-Thumbnail Image.png
Description
The Phoenix CubeSat is a 3U Earth imaging CubeSat which will take infrared (IR) photos of cities in the United Stated to study the Urban Heat Island Effect, (UHI) from low earth orbit (LEO). It has many different components that need to be powered during the life of its mission.

The Phoenix CubeSat is a 3U Earth imaging CubeSat which will take infrared (IR) photos of cities in the United Stated to study the Urban Heat Island Effect, (UHI) from low earth orbit (LEO). It has many different components that need to be powered during the life of its mission. The only power source during the mission will be its solar panels. It is difficult to calculate power generation from solar panels by hand because of the different orientations the satellite will be positioned in during orbit; therefore, simulation will be used to produce power generation data. Knowing how much power is generated is integral to balancing the power budget, confirming whether there is enough power for all the components, and knowing whether there will be enough power in the batteries during eclipse. This data will be used to create an optimal design for the Phoenix CubeSat to accomplish its mission.
ContributorsBarakat, Raymond John (Author) / White, Daniel (Thesis director) / Kitchen, Jennifer (Committee member) / Electrical Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
135386-Thumbnail Image.png
Description
Parkinson's disease is a neurodegenerative disorder in the central nervous system that affects a host of daily activities and involves a variety of symptoms; these include tremors, slurred speech, and rigid muscles. It is the second most common movement disorder globally. In Stage 3 of Parkinson's, afflicted individuals begin to

Parkinson's disease is a neurodegenerative disorder in the central nervous system that affects a host of daily activities and involves a variety of symptoms; these include tremors, slurred speech, and rigid muscles. It is the second most common movement disorder globally. In Stage 3 of Parkinson's, afflicted individuals begin to develop an abnormal gait pattern known as freezing of gait (FoG), which is characterized by decreased step length, shuffling, and eventually complete loss of movement; they are unable to move, and often results in a fall. Surface electromyography (sEMG) is a diagnostic tool to measure electrical activity in the muscles to assess overall muscle function. Most conventional EMG systems, however, are bulky, tethered to a single location, expensive, and primarily used in a lab or clinical setting. This project explores an affordable, open-source, and portable platform called Open Brain-Computer Interface (OpenBCI). The purpose of the proposed device is to detect gait patterns by leveraging the surface electromyography (EMG) signals from the OpenBCI and to help a patient overcome an episode using haptic feedback mechanisms. Previously designed devices with similar intended purposes utilize accelerometry as a method of detection as well as audio and visual feedback mechanisms in their design.
ContributorsAnantuni, Lekha (Author) / McDaniel, Troy (Thesis director) / Tadayon, Arash (Committee member) / Harrington Bioengineering Program (Contributor) / School of Human Evolution and Social Change (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05