Matching Items (22)
Filtering by

Clear all filters

156839-Thumbnail Image.png
Description
Buildings continue to take up a significant portion of the global energy consumption, meaning there are significant research opportunities in reducing the energy consumption of the building sector. One widely studied area is waste heat recovery. The purpose of this research is to test a prototype thermogalvanic cell in the

Buildings continue to take up a significant portion of the global energy consumption, meaning there are significant research opportunities in reducing the energy consumption of the building sector. One widely studied area is waste heat recovery. The purpose of this research is to test a prototype thermogalvanic cell in the form factor of a UK metric brick sized at 215 mm × 102.5 mm × 65 mm for the experimental power output using a copper/copper(II) (Cu/Cu2+) based aqueous electrode. In this study the thermogalvanic brick uses a 0.7 M CuSO4 + 0.1 M H2SO4 aqueous electrolyte with copper electrodes as two of the walls. The other walls of the thermogalvanic brick are made of 5.588 mm (0.22 in) thick acrylic sheet. Internal to the brick, a 0.2 volume fraction minimal surface Schwartz diamond (Schwartz D) structure made of ABS, Polycarbonate-ABS (PCABS), and Polycarbonate-Carbon Fiber (PCCF) was tested to see the effects on the power output of the thermogalvanic brick. By changing the size of the thermogalvanic cell into that of a brick will allow this thermogalvanic cell to become the literal building blocks of green buildings. The thermogalvanic brick was tested by applying a constant power to the strip heater attached to the hot side of the brick, resulting in various ∆T values between 8◦C and 15◦C depending on the material of Schwartz D inside. From this, it was found that a single Cu/Cu2+ thermogalvanic brick containing the PCCF or PCABS Schwartz D performed equivalently well at a 163.8% or 164.9%, respectively, higher normalized power density output than the control brick containing only electrolyte solution.
ContributorsLee, William J. (Author) / Phelan, Patrick (Thesis advisor) / El Asmar, Mounir (Committee member) / Milcarek, Ryan (Committee member) / Arizona State University (Publisher)
Created2018
153834-Thumbnail Image.png
Description
First, in a large-scale structure, a 3-D CFD model was built to simulate flow and temperature distributions. The flow patterns and temperature distributions are characterized and validated through spot measurements. The detailed understanding of them then allows for optimization of the HVAC configuration because identification of the problematic flow patterns

First, in a large-scale structure, a 3-D CFD model was built to simulate flow and temperature distributions. The flow patterns and temperature distributions are characterized and validated through spot measurements. The detailed understanding of them then allows for optimization of the HVAC configuration because identification of the problematic flow patterns and temperature mis-distributions leads to some corrective measures. Second, an appropriate form of the viscous dissipation term in the integral form of the conservation equation was considered, and the effects of momentum terms on the computed drop size in pressure-atomized sprays were examined. The Sauter mean diameter (SMD) calculated in this manner agrees well with experimental data of the drop velocities and sizes. Using the suggested equation with the revised treatment of liquid momentum setup, injection parameters can be directly input to the system of equations. Thus, this approach is capable of incorporating the effects of injection parameters for further considerations of the drop and velocity distributions under a wide range of spray geometry and injection conditions. Lastly, groundwater level estimation was investigated using compressed sensing (CS). To satisfy a general property of CS, a random measurement matrix was used, the groundwater network was constructed, and finally the l-1 optimization was run. Through several validation tests, correct estimation of groundwater level by CS was shown. Using this setup, decreasing trends in groundwater level in the southwestern US was shown. The suggested method is effective in that the total measurements of registered wells can be reduced down by approximately 42 %, sparse data can be visualized and a possible approach for groundwater management during extreme weather changes, e.g. in California, was demonstrated.
ContributorsLee, Joon Young (Author) / Lee, Taewoo (Thesis advisor) / Huang, Huei-Ping (Committee member) / Lopez, Juan (Committee member) / Phelan, Patrick (Committee member) / Chen, Kangping (Committee member) / Arizona State University (Publisher)
Created2015
155001-Thumbnail Image.png
Description
This work aimed to characterize and optimize the variables that influence the Gas Diffusion Layer (GDL) preparation using design of experiment (DOE) approach. In the process of GDL preparation, the quantity of carbon support and Teflon were found to have significant influence on the Proton Exchange Membrane Fuel Cell (PEMFC).

This work aimed to characterize and optimize the variables that influence the Gas Diffusion Layer (GDL) preparation using design of experiment (DOE) approach. In the process of GDL preparation, the quantity of carbon support and Teflon were found to have significant influence on the Proton Exchange Membrane Fuel Cell (PEMFC). Characterization methods like surface roughness, wetting characteristics, microstructure surface morphology, pore size distribution, thermal conductivity of GDLs were examined using laser interferometer, Goniometer, SEM, porosimetry and thermal conductivity analyzer respectively. The GDLs were evaluated in single cell PEMFC under various operating conditions of temperature and relative humidity (RH) using air as oxidant. Electrodes were prepared with different PUREBLACK® and poly-tetrafluoroethylene (PTFE) content in the diffusion layer and maintaining catalytic layer with a Pt-loading (0.4 mg cm-2). In the study, a 73.16 wt.% level of PB and 34 wt.% level of PTFE was the optimal compositions for GDL at 70 °C for 70% RH under air atmosphere.

For most electrochemical processes the oxygen reduction is very vita reaction. Pt loading in the electrocatalyst contributes towards the total cost of electrochemical devices. Reducing the Pt loading in electrocatalysts with high efficiency is important for the development of fuel cell technologies. To this end, this thesis work reports the approach to lower down the Pt loading in electrocatalyst based on N-doped carbon nanotubes derived from Zeolitic Imidazolate Frameworks (ZIF-67) for oxygen reduction. This electrocatalyst perform with higher electrocatalytic activity and stability for oxygen reduction in fuel cell testing. The electrochemical properties are mainly due to the synergistic effect from N-doped carbon nanotubes derived from ZIF and Pt loading. The strategy with low Pt loading forecasts in emerging highly active and less expensive electrocatalysts in electrochemical energy devices.

This thesis focuses on: (i) methods to obtain greater power density by optimizing content of wet-proofing agent (PTFE) and fine-grained, hydrophobic, microporous layer (MPL); (ii) modeling full factorial analysis of PEMFC for evaluation with experimental results and predicting further improvements in performance; (iii) methods to obtain high levels of performance with low Pt loading electrodes based on N-doped carbon nanotubes derived from ZIF-67 and Pt.
ContributorsKasat, Harshal Anil (Author) / Kannan, Arunachalana (Thesis advisor) / Phelan, Patrick (Thesis advisor) / Shuaib, Abdelrahman (Committee member) / Arizona State University (Publisher)
Created2016
154921-Thumbnail Image.png
Description
The proposed research mainly focuses on employing tunable materials to achieve dynamic control of radiative heat transfer in both far and near fields for thermal management. Vanadium dioxide (VO2), which undergoes a phase transition from insulator to metal at the temperature of 341 K, is one tunable material being applied.

The proposed research mainly focuses on employing tunable materials to achieve dynamic control of radiative heat transfer in both far and near fields for thermal management. Vanadium dioxide (VO2), which undergoes a phase transition from insulator to metal at the temperature of 341 K, is one tunable material being applied. The other one is graphene, whose optical properties can be tuned by chemical potential through external bias or chemical doping.

In the far field, a VO2-based metamaterial thermal emitter with switchable emittance in the mid-infrared has been theoretically studied. When VO2 is in the insulating phase, high emittance is observed at the resonance frequency of magnetic polaritons (MPs), while the structure becomes highly reflective when VO2 turns metallic. A VO2-based thermal emitter with tunable emittance is also demonstrated due to the excitation of MP at different resonance frequencies when VO2 changes phase. Moreover, an infrared thermal emitter made of graphene-covered SiC grating could achieve frequency-tunable emittance peak via the change of the graphene chemical potential.

In the near field, a radiation-based thermal rectifier is constructed by investigating radiative transfer between VO2 and SiO2 separated by nanometer vacuum gap distances. Compared to the case where VO2 is set as the emitter at 400 K as a metal, when VO2 is considered as the receiver at 300 K as an insulator, the energy transfer is greatly enhanced due to the strong surface phonon polariton (SPhP) coupling between insulating VO2 and SiO2. A radiation-based thermal switch is also explored by setting VO2 as both the emitter and the receiver. When both VO2 emitter and receiver are at the insulating phase, the switch is at the “on” mode with a much enhanced heat flux due to strong SPhP coupling, while the near-field radiative transfer is greatly suppressed when the emitting VO2 becomes metallic at temperatures higher than 341K during the “off” mode. In addition, an electrically-gated thermal modulator made of graphene covered SiC plates is theoretically studied with modulated radiative transport by varying graphene chemical potential. Moreover, the MP effect on near-field radiative transport has been investigated by spectrally enhancing radiative heat transfer between two metal gratings.
ContributorsYang, Yue (Author) / Wang, Liping (Thesis advisor) / Phelan, Patrick (Committee member) / Wang, Robert (Committee member) / Tongay, Sefaattin (Committee member) / Rykaczewski, Konrad (Committee member) / Arizona State University (Publisher)
Created2016
Description
An eco-industrial park (EIP) is an industrial ecosystem in which a group of co-located firms are involved in collective resource optimization with each other and with the local community through physical exchanges of energy, water, materials, byproducts and services - referenced in the industrial ecology literature as "industrial symbiosis". EIPs,

An eco-industrial park (EIP) is an industrial ecosystem in which a group of co-located firms are involved in collective resource optimization with each other and with the local community through physical exchanges of energy, water, materials, byproducts and services - referenced in the industrial ecology literature as "industrial symbiosis". EIPs, when compared with standard industrial resource sharing networks, prove to be of greater public advantage as they offer improved environmental and economic benefits, and higher operational efficiencies both upstream and downstream in their supply chain.

Although there have been many attempts to adapt EIP methodology to existing industrial sharing networks, most of them have failed for various factors: geographic restrictions by governmental organizations on use of technology, cost of technology, the inability of industries to effectively communicate their upstream and downstream resource usage, and to diminishing natural resources such as water, land and non-renewable energy (NRE) sources for energy production.

This paper presents a feasibility study conducted to evaluate the comparative environmental, economic, and geographic impacts arising from the use of renewable energy (RE) and NRE to power EIPs. Life Cycle Assessment (LCA) methodology, which is used in a variety of sectors to evaluate the environmental merits and demerits of different kinds of products and processes, was employed for comparison between these two energy production methods based on factors such as greenhouse gas emission, acidification potential, eutrophication potential, human toxicity potential, fresh water usage and land usage. To complement the environmental LCA analysis, levelized cost of electricity was used to evaluate the economic impact. This model was analyzed for two different geographic locations; United States and Europe, for 12 different energy production technologies.

The outcome of this study points out the environmental, economic and geographic superiority of one energy source over the other, including the total carbon dioxide equivalent emissions, which can then be related to the total number of carbon credits that can be earned or used to mitigate the overall carbon emission and move closer towards a net zero carbon footprint goal thus making the EIPs truly sustainable.
ContributorsGupta, Vaibhav (Author) / Calhoun, Ronald J (Thesis advisor) / Dooley, Kevin (Committee member) / Phelan, Patrick (Committee member) / Arizona State University (Publisher)
Created2014
157987-Thumbnail Image.png
Description
The applications utilizing nanoparticles have grown in both industrial and academic areas because of the very large surface area to volume ratios of these particles. One of the best ways to process and control these nanoparticles is fluidization. In this work, a new microjet and vibration assisted (MVA) fluidized bed

The applications utilizing nanoparticles have grown in both industrial and academic areas because of the very large surface area to volume ratios of these particles. One of the best ways to process and control these nanoparticles is fluidization. In this work, a new microjet and vibration assisted (MVA) fluidized bed system was developed in order to fluidize nanoparticles. The system was tested and the parameters optimized using two commercially available TiO2 nanoparticles: P25 and P90. The fluidization quality was assessed by determining the non-dimensional bed height as well as the non-dimensional pressure drop. The non-dimensional bed height for the nanosized TiO2 in the MVA system optimized at about 5 and 7 for P25 and P90 TiO2, respectively, at a resonance frequency of 50 Hz. The non-dimensional pressure drop was also determined and showed that the MVA system exhibited a lower minimum fluidization velocity for both of the TiO2 types as compared to fluidization that employed only vibration assistance. Additional experiments were performed with the MVA to characterize the synergistic effects of vibrational intensity and gas velocity on the TiO2 P25 and P90 fluidized bed heights. Mathematical relationships were developed to correlate vibrational intensity, gas velocity, and fluidized bed height in the MVA. The non-dimensional bed height in the MVA system is comparable to previously published P25 TiO2 fluidization work that employed an alcohol in order to minimize the electrostatic attractions within the bed. However, the MVA system achieved similar results without the addition of a chemical, thereby expanding the potential chemical reaction engineering and environmental remediation opportunities for fluidized nanoparticle systems.

In order to aid future scaling up of the MVA process, the agglomerate size distribution in the MVA system was predicted by utilizing a force balance model coupled with a two-fluid model (TFM) simulation. The particle agglomerate size that was predicted using the computer simulation was validated with experimental data and found to be in good agreement.

Lastly, in order to demonstrate the utility of the MVA system in an air revitalization application, the capture of CO2 was examined. CO2 breakthrough time and adsorption capacities were tested in the MVA system and compared to a vibrating fluidized bed (VFB) system. Experimental results showed that the improved fluidity in the MVA system enhanced CO2 adsorption capacity.
ContributorsAn, Keju (Author) / Andino, Jean (Thesis advisor) / Phelan, Patrick (Thesis advisor) / Adrian, Ronald (Committee member) / Emady, Heather (Committee member) / Kasbaoui, Mohamed (Committee member) / Arizona State University (Publisher)
Created2019
158333-Thumbnail Image.png
Description
About 20-50% of industrial processes energy is lost as waste heat in their operations. The thermal hydraulic engine relies on the thermodynamic properties of supercritical carbon dioxide (CO2) to efficiently perform work. Carbon dioxide possesses great properties that makes it a safe working fluid for the engine’s applications. This research

About 20-50% of industrial processes energy is lost as waste heat in their operations. The thermal hydraulic engine relies on the thermodynamic properties of supercritical carbon dioxide (CO2) to efficiently perform work. Carbon dioxide possesses great properties that makes it a safe working fluid for the engine’s applications. This research aims to preliminarily investigate the actual efficiency which can be obtained through experimental data and compare that to the Carnot or theoretical maximum efficiency. The actual efficiency is investigated through three approaches. However, only the efficiency results from the second method are validated since the other approaches are based on a complete actual cycle which was not achieved for the engine. The efficiency of the thermal hydraulic engine is found to be in the range of 0.5% to 2.2% based on the second method which relies on the boundary work by the piston. The heating and cooling phases of the engine’s operation are viewed on both the T-s (temperature-entropy) and p-v (pressure-volume) diagrams. The Carnot efficiency is also found to be 13.7% from a temperature difference of 46.20C based on the measured experimental data. It is recommended that the thermodynamic cycle and efficiency investigation be repeated using an improved heat exchanger design to reduce energy losses and gains during both the heating and cooling phases. The temperature of CO2 can be measured through direct contact with the thermocouple and pressure measurements can be improved using a digital pressure transducer for the thermodynamic cycle investigation.
ContributorsManford, David (Author) / Phelan, Patrick (Thesis advisor) / Calhoun, Ronald (Thesis advisor) / Shuaib, Abdelrahman (Committee member) / Arizona State University (Publisher)
Created2020
158261-Thumbnail Image.png
Description
The presence of huge amounts of waste heat and the constant demand for electric energy makes this an appreciable research topic, yet at present there is no commercially viable technology to harness the inherent energy resource provided by the temperature differential between the inside and outside of buildings. In a

The presence of huge amounts of waste heat and the constant demand for electric energy makes this an appreciable research topic, yet at present there is no commercially viable technology to harness the inherent energy resource provided by the temperature differential between the inside and outside of buildings. In a newly developed technology, electricity is generated from the temperature gradient between building walls through a Seebeck effect. A 3D-printed triply periodic minimal surface (TPMS) structure is sandwiched in copper electrodes with copper (I) sulphate (Cu2SO4) electrolyte to mimic a thermogalvanic cell. Previous studies mainly concentrated on mechanical properties and the electric power generation ability of these structures; however, the goal of this study is to estimate the thermal resistance of the 3D-printed TPMS experimentally. This investigation elucidates their thermal resistances which in turn helps to appreciate the power output associated in the thermogalvanic structure. Schwarz P, Gyroid, IWP, and Split P geometries were considered for the experiment with electrolyte in the thermogalvanic brick. Among these TPMS structures, Split P was found more thermally resistive than the others with a thermal resistance of 0.012 m2 K W-1. The thermal resistances of Schwarz D and Gyroid structures were also assessed experimentally without electrolyte and the results are compared to numerical predictions in a previous Mater's thesis.
ContributorsDasinor, Emmanuel (Author) / Phelan, Patrick (Thesis advisor) / Milcarek, Ryan (Committee member) / Bhate, Dhruv (Committee member) / Arizona State University (Publisher)
Created2020
158822-Thumbnail Image.png
Description
Deformable heat exchangers could provide a multitude of previously untapped advantages ranging from adaptable performance via macroscale, dynamic shape change (akin to dilation/constriction seen in blood vessels) to enhanced heat transfer at thermal interfaces through microscale, surface deformations. So far, making deformable, ‘soft heat exchangers’ (SHXs) has been limited by

Deformable heat exchangers could provide a multitude of previously untapped advantages ranging from adaptable performance via macroscale, dynamic shape change (akin to dilation/constriction seen in blood vessels) to enhanced heat transfer at thermal interfaces through microscale, surface deformations. So far, making deformable, ‘soft heat exchangers’ (SHXs) has been limited by the low thermal conductivity of materials with suitable mechanical properties. The recent introduction of liquid-metal embedded elastomers by Bartlett et al1 has addressed this need. Specifically, by remaining soft and stretchable despite the addition of filler, these thermally conductive composites provide an ideal material for the new class of “soft thermal systems”, which is introduced in this work. Understanding such thermal systems will be a key element in enabling technology that require high levels of stretchability, such as thermoregulatory garments, soft electronics, wearable electronics, and high-powered robotics. Shape change inherent to SHX operation has the potential to violate many conventional assumptions used in HX design and thus requires the development of new theoretical approaches to predict performance. To create a basis for understanding these devices, this work highlights two sequential studies. First, the effects of transitioning to a surface deformable, SHX under steady state static conditions in the setting of a liquid cooling device for thermoregulation, electronics and robotics applications was explored. In this study, a thermomechanical model was built and validated to predict the thermal performance and a system wide analysis to optimize such devices was carried out. Second, from a more fundamental perspective, the effects of SHXs undergoing transient shape deformation during operation was explored. A phase shift phenomenon in cooling performance dependent on stretch rate, stretch extent and thermal diffusivity was discovered and explained. With the use of a time scale analysis, the extent of quasi-static assumption viability in modeling such systems was quantified and multiple shape modulation regime limits were defined. Finally, nuance considerations and future work of using liquid metal-silicone composites in SHXs were discussed.
ContributorsKotagama, Praveen (Author) / Rykaczewski, Konrad (Thesis advisor) / Wang, Robert (Committee member) / Phelan, Patrick (Committee member) / Herrmann, Marcus (Committee member) / Green, Matthew (Committee member) / Arizona State University (Publisher)
Created2020
158779-Thumbnail Image.png
Description
The primary goal of this thesis is to evaluate the influence of ethyl vinyl acetate (EVA) and polyolefin elastomer (POE) encapsulant types on the glass-glass (GG) photovoltaic (PV) module reliability. The influence of these two encapsulant types on the reliability of GG modules was compared with baseline glass-polymer backsheet (GB)

The primary goal of this thesis is to evaluate the influence of ethyl vinyl acetate (EVA) and polyolefin elastomer (POE) encapsulant types on the glass-glass (GG) photovoltaic (PV) module reliability. The influence of these two encapsulant types on the reliability of GG modules was compared with baseline glass-polymer backsheet (GB) modules for a benchmarking purpose. Three sets of modules, with four modules in each set, were constructed with two substrates types i.e. glass-glass (GG) and glass- polymer backsheet (GB); and 2 encapsulants types i.e. ethyl vinyl acetate (EVA) and polyolefin elastomer (POE). Each module set was subjected to the following accelerated tests as specified in the International Electrotechnical Commission (IEC) standard and Qualification Plus protocol of NREL: Ultraviolet (UV) 250 kWh/m2; Thermal Cycling (TC) 200 cycles; Damp Heat (DH) 1250 hours. To identify the failure modes and reliability issues of the stressed modules, several module-level non-destructive characterizations were carried out and they include colorimetry, UV-Vis-NIR spectral reflectance, ultraviolet fluorescence (UVF) imaging, electroluminescence (EL) imaging, and infrared (IR) imaging. The above-mentioned characterizations were performed on the front side of the modules both before the stress tests (i.e. pre-stress) and after the stress tests (i.e. post-stress). The UV-250 extended stress results indicated slight changes in the reflectance on the non-cell area of EVA modules probably due to minor adhesion loss at the cell and module edges. From the DH-1250 extended stress tests, significant changes, in both encapsulant types modules, were observed in reflectance and UVF images indicating early stages of delamination. In the case of the TC-200 stress test, practically no changes were observed in all sets of modules. From the above short-term stress tests, it appears although not conclusive at this stage of the analysis, delamination seems to be the only failure mode that could possibly be affecting the module performance, as observed from UV and DH extended stress tests. All these stress tests need to be continued to identify the wear-out failure modes and their impacts on the performance parameters of PV modules.
ContributorsBhaskaran, Rahul (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Phelan, Patrick (Thesis advisor) / Wang, Liping (Committee member) / Arizona State University (Publisher)
Created2020