Matching Items (7)
Filtering by

Clear all filters

151362-Thumbnail Image.png
Description
Urban water systems face sustainability challenges ranging from water quality, leaks, over-use, energy consumption, and long-term supply concerns. Resiliency challenges include the capacity to respond to drought, managing pipe deterioration, responding to natural disasters, and preventing terrorism. One strategy to enhance sustainability and resiliency is the development and adoption of

Urban water systems face sustainability challenges ranging from water quality, leaks, over-use, energy consumption, and long-term supply concerns. Resiliency challenges include the capacity to respond to drought, managing pipe deterioration, responding to natural disasters, and preventing terrorism. One strategy to enhance sustainability and resiliency is the development and adoption of smart water grids. A smart water grid incorporates networked monitoring and control devices into its structure, which provides diverse, real-time information about the system, as well as enhanced control. Data provide input for modeling and analysis, which informs control decisions, allowing for improvement in sustainability and resiliency. While smart water grids hold much potential, there are also potential tradeoffs and adoption challenges. More publicly available cost-benefit analyses are needed, as well as system-level research and application, rather than the current focus on individual technologies. This thesis seeks to fill one of these gaps by analyzing the cost and environmental benefits of smart irrigation controllers. Smart irrigation controllers can save water by adapting watering schedules to climate and soil conditions. The potential benefit of smart irrigation controllers is particularly high in southwestern U.S. states, where the arid climate makes water scarcer and increases watering needs of landscapes. To inform the technology development process, a design for environment (DfE) method was developed, which overlays economic and environmental performance parameters under different operating conditions. This method is applied to characterize design goals for controller price and water savings that smart irrigation controllers must meet to yield life cycle carbon dioxide reductions and economic savings in southwestern U.S. states, accounting for regional variability in electricity and water prices and carbon overhead. Results from applying the model to smart irrigation controllers in the Southwest suggest that some areas are significantly easier to design for.
ContributorsMutchek, Michele (Author) / Allenby, Braden (Thesis advisor) / Williams, Eric (Committee member) / Westerhoff, Paul (Committee member) / Arizona State University (Publisher)
Created2012
153486-Thumbnail Image.png
Description
Quantum resilience is a pragmatic theory that allows systems engineers to formally characterize the resilience of systems. As a generalized theory, it not only clarifies resilience in the literature, but also can be applied to all disciplines and domains of discourse. Operationalizing resilience in this manner permits decision-makers to compare

Quantum resilience is a pragmatic theory that allows systems engineers to formally characterize the resilience of systems. As a generalized theory, it not only clarifies resilience in the literature, but also can be applied to all disciplines and domains of discourse. Operationalizing resilience in this manner permits decision-makers to compare and contrast system deployment options for suitability in a variety of environments and allows for consistent treatment of resilience across domains. Systems engineers, whether planning future infrastructures or managing ecosystems, are increasingly asked to deliver resilient systems. Quantum resilience provides a way forward that allows specific resilience requirements to be specified, validated, and verified.

Quantum resilience makes two very important claims. First, resilience cannot be characterized without recognizing both the system and the valued function it provides. Second, resilience is not about disturbances, insults, threats, or perturbations. To avoid crippling infinities, characterization of resilience must be accomplishable without disturbances in mind. In light of this, quantum resilience defines resilience as the extent to which a system delivers its valued functions, and characterizes resilience as a function of system productivity and complexity. System productivity vis-à-vis specified “valued functions” involves (1) the quanta of the valued function delivered, and (2) the number of systems (within the greater system) which deliver it. System complexity is defined structurally and relationally and is a function of a variety of items including (1) system-of-systems hierarchical decomposition, (2) interfaces and connections between systems, and (3) inter-system dependencies.

Among the important features of quantum resilience is that it can be implemented in any system engineering tool that provides sufficient design and specification rigor (i.e., one that supports standards like the Lifecycle and Systems Modeling languages and frameworks like the DoD Architecture Framework). Further, this can be accomplished with minimal software development and has been demonstrated in three model-based system engineering tools, two of which are commercially available, well-respected, and widely used. This pragmatic approach assures transparency and consistency in characterization of resilience in any discipline.
ContributorsRoberts, Thomas Wade (Author) / Allenby, Braden (Thesis advisor) / Chester, Mikhail (Committee member) / Anderies, John M (Committee member) / Arizona State University (Publisher)
Created2015
156469-Thumbnail Image.png
Description
The 21st-century professional or knowledge worker spends much of the working day engaging others through electronic communication. The modes of communication available to knowledge workers have rapidly increased due to computerized technology advances: conference and video calls, instant messaging, e-mail, social media, podcasts, audio books, webinars, and much more. Professionals

The 21st-century professional or knowledge worker spends much of the working day engaging others through electronic communication. The modes of communication available to knowledge workers have rapidly increased due to computerized technology advances: conference and video calls, instant messaging, e-mail, social media, podcasts, audio books, webinars, and much more. Professionals who think for a living express feelings of stress about their ability to respond and fear missing critical tasks or information as they attempt to wade through all the electronic communication that floods their inboxes. Although many electronic communication tools compete for the attention of the contemporary knowledge worker, most professionals use an electronic personal information management (PIM) system, more commonly known as an e-mail application and often the ubiquitous Microsoft Outlook program. The aim of this research was to provide knowledge workers with solutions to manage the influx of electronic communication that arrives daily by studying the workers in their working environment. This dissertation represents a quest to understand the current strategies knowledge workers use to manage their e-mail, and if modification of e-mail management strategies can have an impact on productivity and stress levels for these professionals. Today’s knowledge workers rarely work entirely alone, justifying the importance of also exploring methods to improve electronic communications within teams.
ContributorsCounts, Virginia (Author) / Parrish, Kristen (Thesis advisor) / Allenby, Braden (Thesis advisor) / Landis, Amy (Committee member) / Cooke, Nancy J. (Committee member) / Arizona State University (Publisher)
Created2018
154957-Thumbnail Image.png
Description
Cities are, at once, a habitat for humans, a center of economic production, a direct consumer of natural resources in the local environment, and an indirect consumer of natural resources at regional, national, and global scales. These processes do not take place in isolation: rather they are nested within complex

Cities are, at once, a habitat for humans, a center of economic production, a direct consumer of natural resources in the local environment, and an indirect consumer of natural resources at regional, national, and global scales. These processes do not take place in isolation: rather they are nested within complex coupled natural-human (CNH) systems that have nearby and distant teleconnections. Infrastructure systems—roads, electrical grids, pipelines, damns, and aqueducts, to name a few—have been built to convey and store these resources from their point of origin to their point of consumption. Traditional hard infrastructure systems are complemented by soft infrastructure, such as governance, legal, economic, and social systems, which rely upon the conveyance of information and currency rather than a physical commodity, creating teleconnections that link multiple CNH systems. The underlying structure of these systems allows for the creation of novel network methodologies to study the interdependencies, feedbacks, and timescales between direct and indirect resource consumers and producers; to identify potential vulnerabilities within the system; and to model the configuration of ideal system states. Direct and indirect water consumption provides an ideal indicator for such study because water risk is highly location-based in terms of geography, climate, economics, and cultural norms and is manifest at multiple geographic scales. Taken together, the CNH formed by economic trade and indirect water exchange networks create hydro-economic networks. Given the importance of hydro-economic networks for human well-being and economic production, this dissertation answers the overarching research question: What information do we gain from analyzing virtual water trade at the systems level rather than the component city level? Three studies are presented with case studies pertaining to the State of Arizona. The first derives a robust methodology to disaggregate indirect water flows to subcounty geographies. The second creates city-level metrics of hydro-economic vulnerability and functional diversity. The third analyzes the physical, legal, and economic allocation of a shared river basin to identify vulnerable nodes in river basin hydro-economic networks. This dissertation contributes to the literature through the creation of novel metrics to measure hydro-economic network properties and to generate insight into potential US hydro-economic shocks.
ContributorsRushforth, Richard Ray (Author) / Ruddell, Benajmin L (Thesis advisor) / Allenby, Braden (Committee member) / Chester, Mikhail (Committee member) / Seager, Thomas (Committee member) / Arizona State University (Publisher)
Created2016
155399-Thumbnail Image.png
Description
The 21st century will be the site of numerous changes in education systems in response to a rapidly evolving technological environment where existing skill sets and career structures may cease to exist or, at the very least, change dramatically. Likewise, the nature of work will also change to become more

The 21st century will be the site of numerous changes in education systems in response to a rapidly evolving technological environment where existing skill sets and career structures may cease to exist or, at the very least, change dramatically. Likewise, the nature of work will also change to become more automated and more technologically intensive across all sectors, from food service to scientific research. Simply having technical expertise or the ability to process and retain facts will in no way guarantee success in higher education or a satisfying career. Instead, the future will value those educated in a way that encourages collaboration with technology, critical thinking, creativity, clear communication skills, and strong lifelong learning strategies. These changes pose a challenge for higher education’s promise of employability and success post-graduation. Addressing how to prepare students for a technologically uncertain future is challenging. One possible model for education to prepare students for the future of work can be found within the Maker Movement. However, it is not fully understood what parts of this movement are most meaningful to implement in education more broadly, and higher education in particular. Through the qualitative analysis of nearly 160 interviews of adult makers, young makers and young makers’ parents, this dissertation unpacks how makers are learning, what they are learning, and how these qualities are applicable to education goals and the future of work in the 21st century. This research demonstrates that makers are learning valuable skills to prepare them for the future of work in the 21st century. Makers are learning communication skills, technical skills in fabrication and design, and developing lifelong learning strategies that will help prepare them for life in an increasingly technologically integrated future. This work discusses what aspects of the Maker Movement are most important for integration into higher education.
ContributorsWigner, Aubrey (Author) / Lande, Micah (Thesis advisor) / Allenby, Braden (Committee member) / Bennett, Ira (Committee member) / Arizona State University (Publisher)
Created2017
171569-Thumbnail Image.png
Description
This thesis examines the composition, flow rate, and recyclability of two abundant materials generated in modern society: municipal sewage sludge (SS) generated during conventional wastewater treatment, and single-use plastic packaging (specifically, plastic bottles) manufactured and dispersed by fast-moving consumer goods companies (FMCG). The study found the presence of 5 precious

This thesis examines the composition, flow rate, and recyclability of two abundant materials generated in modern society: municipal sewage sludge (SS) generated during conventional wastewater treatment, and single-use plastic packaging (specifically, plastic bottles) manufactured and dispersed by fast-moving consumer goods companies (FMCG). The study found the presence of 5 precious metals in both American and Chinese sewage sludges. 13 rare elements were found in American sewage sludge while 14 were found in Chinese sewage sludge. Modeling results indicated 251 to 282 million metric tons (MMT) of SS from 2022 to 2050, estimated to contain some 6.8 ± 0.5 MMT of valuable elements in the USA, the reclamation of which is valued at $24B ± $1.6B USD. China is predicted to produce between 819 - 910 MMT of SS between 2022 and 2050 containing an estimated 14.9 ± 1.7 MMT of valuable elements worth a cumulative amount of $94B ± 20B (Chapter 2 and 3). The 4th chapter modeled how much plastic waste Coca-Cola, PespiCo and Nestlé produced and globally dispersed in 21 years: namely an estimated 126 MMT ± 8.7 MMT of plastic. Some 15.6 MMT ± 1.3 MMT (12%) is projected to have become aquatic pollution costing estimated at $286B USD. Some 58 ± 5 MMT or 46% of the total mass were estimated to result in terrestrial plastic pollution, with only minor amounts of 9.9 ± 0.7 MMT, deemed actually recycled. Absent of change, the three companies are predicted to generate an additional 330 ± 15 MMT of plastic by 2050, thereby creating estimated externalities of $8 ± 0.4 trillion USD. The analysis suggests that a small subset of FMCG companies are well positioned to change the current trajectory of global plastic pollution and ocean plastic littering. Chapter 5 examined the barriers to Circular Economy. In an increasingly uncertain post pandemic world, it is becoming progressively important to conserve local resources and extract value from materials that are currently interpreted a “waste” rather than a current or potential future resource.
ContributorsBiyani, Nivedita (Author) / Halden, Rolf U. (Thesis advisor) / Allenby, Braden (Committee member) / Jalbert, Kirk (Committee member) / Arizona State University (Publisher)
Created2022
171699-Thumbnail Image.png
Description
Crises at Teton Dam in 1976, Roosevelt Dam in 1980, Tempe Town Lake Dam in 2010, Oroville Dam in 2017, and the Edenville and Sanford Dams in 2020 prove the substantial and continuing threats to communities posed by major dams. Sociotechnical systems of dams encompass both social or governance characteristics

Crises at Teton Dam in 1976, Roosevelt Dam in 1980, Tempe Town Lake Dam in 2010, Oroville Dam in 2017, and the Edenville and Sanford Dams in 2020 prove the substantial and continuing threats to communities posed by major dams. Sociotechnical systems of dams encompass both social or governance characteristics as well as the technical or architectural characteristics. To reduce or overcome chances of failure, experts traditionally focus on making the architectural characteristics of dams safe from potential modes of failure. However, governance characteristics such as laws, building codes, and emergency actions plans also affect the ability of systems of dams that include downstream communities to sustainably adapt to crises. Increasingly, emerging threats such as climate change, earthquakes, terrorism, cyberattacks, or wildfires worsen known modes of failure such as overtopping.Considering these emerging threats, my research assesses whether the architectural and governance characteristics of the aging population of systems of dams in the United States can sustainably adapt to challenges posed by emerging threats. First, by analyzing architectural characteristics of dams, my research provides a useful definition of infrastructures of dams. Next, to assess the governance characteristics of dams, I review institutional documents to heuristically outline seven sociotechnical imaginaries and assess whether an eighth based on resilience is appearing. Further, by analyzing interview transcripts and professional conference presentations, and by conducting case studies, my research reveals ways that experts and stakeholders assess the safety and resilience of systems of dams. The combined findings of these studies suggest that experts and stakeholders are not sufficiently informed about or focused upon important aspects of the resilience of dams. Therefore, they may not be able to sustainably adapt to crises caused or worsened by emerging threats such as climate change, earthquakes, terrorism, cyberattacks, or wildfires. I offer explanations of why this is so and formulate recommendations.
ContributorsDwyer, Kevin Thomas (Author) / Fisher, Erik (Thesis advisor) / Maynard, Andrew (Committee member) / Allenby, Braden (Committee member) / Arizona State University (Publisher)
Created2022