Matching Items (26)
Filtering by

Clear all filters

158333-Thumbnail Image.png
Description
About 20-50% of industrial processes energy is lost as waste heat in their operations. The thermal hydraulic engine relies on the thermodynamic properties of supercritical carbon dioxide (CO2) to efficiently perform work. Carbon dioxide possesses great properties that makes it a safe working fluid for the engine’s applications. This research

About 20-50% of industrial processes energy is lost as waste heat in their operations. The thermal hydraulic engine relies on the thermodynamic properties of supercritical carbon dioxide (CO2) to efficiently perform work. Carbon dioxide possesses great properties that makes it a safe working fluid for the engine’s applications. This research aims to preliminarily investigate the actual efficiency which can be obtained through experimental data and compare that to the Carnot or theoretical maximum efficiency. The actual efficiency is investigated through three approaches. However, only the efficiency results from the second method are validated since the other approaches are based on a complete actual cycle which was not achieved for the engine. The efficiency of the thermal hydraulic engine is found to be in the range of 0.5% to 2.2% based on the second method which relies on the boundary work by the piston. The heating and cooling phases of the engine’s operation are viewed on both the T-s (temperature-entropy) and p-v (pressure-volume) diagrams. The Carnot efficiency is also found to be 13.7% from a temperature difference of 46.20C based on the measured experimental data. It is recommended that the thermodynamic cycle and efficiency investigation be repeated using an improved heat exchanger design to reduce energy losses and gains during both the heating and cooling phases. The temperature of CO2 can be measured through direct contact with the thermocouple and pressure measurements can be improved using a digital pressure transducer for the thermodynamic cycle investigation.
ContributorsManford, David (Author) / Phelan, Patrick (Thesis advisor) / Calhoun, Ronald (Thesis advisor) / Shuaib, Abdelrahman (Committee member) / Arizona State University (Publisher)
Created2020
158261-Thumbnail Image.png
Description
The presence of huge amounts of waste heat and the constant demand for electric energy makes this an appreciable research topic, yet at present there is no commercially viable technology to harness the inherent energy resource provided by the temperature differential between the inside and outside of buildings. In a

The presence of huge amounts of waste heat and the constant demand for electric energy makes this an appreciable research topic, yet at present there is no commercially viable technology to harness the inherent energy resource provided by the temperature differential between the inside and outside of buildings. In a newly developed technology, electricity is generated from the temperature gradient between building walls through a Seebeck effect. A 3D-printed triply periodic minimal surface (TPMS) structure is sandwiched in copper electrodes with copper (I) sulphate (Cu2SO4) electrolyte to mimic a thermogalvanic cell. Previous studies mainly concentrated on mechanical properties and the electric power generation ability of these structures; however, the goal of this study is to estimate the thermal resistance of the 3D-printed TPMS experimentally. This investigation elucidates their thermal resistances which in turn helps to appreciate the power output associated in the thermogalvanic structure. Schwarz P, Gyroid, IWP, and Split P geometries were considered for the experiment with electrolyte in the thermogalvanic brick. Among these TPMS structures, Split P was found more thermally resistive than the others with a thermal resistance of 0.012 m2 K W-1. The thermal resistances of Schwarz D and Gyroid structures were also assessed experimentally without electrolyte and the results are compared to numerical predictions in a previous Mater's thesis.
ContributorsDasinor, Emmanuel (Author) / Phelan, Patrick (Thesis advisor) / Milcarek, Ryan (Committee member) / Bhate, Dhruv (Committee member) / Arizona State University (Publisher)
Created2020
158822-Thumbnail Image.png
Description
Deformable heat exchangers could provide a multitude of previously untapped advantages ranging from adaptable performance via macroscale, dynamic shape change (akin to dilation/constriction seen in blood vessels) to enhanced heat transfer at thermal interfaces through microscale, surface deformations. So far, making deformable, ‘soft heat exchangers’ (SHXs) has been limited by

Deformable heat exchangers could provide a multitude of previously untapped advantages ranging from adaptable performance via macroscale, dynamic shape change (akin to dilation/constriction seen in blood vessels) to enhanced heat transfer at thermal interfaces through microscale, surface deformations. So far, making deformable, ‘soft heat exchangers’ (SHXs) has been limited by the low thermal conductivity of materials with suitable mechanical properties. The recent introduction of liquid-metal embedded elastomers by Bartlett et al1 has addressed this need. Specifically, by remaining soft and stretchable despite the addition of filler, these thermally conductive composites provide an ideal material for the new class of “soft thermal systems”, which is introduced in this work. Understanding such thermal systems will be a key element in enabling technology that require high levels of stretchability, such as thermoregulatory garments, soft electronics, wearable electronics, and high-powered robotics. Shape change inherent to SHX operation has the potential to violate many conventional assumptions used in HX design and thus requires the development of new theoretical approaches to predict performance. To create a basis for understanding these devices, this work highlights two sequential studies. First, the effects of transitioning to a surface deformable, SHX under steady state static conditions in the setting of a liquid cooling device for thermoregulation, electronics and robotics applications was explored. In this study, a thermomechanical model was built and validated to predict the thermal performance and a system wide analysis to optimize such devices was carried out. Second, from a more fundamental perspective, the effects of SHXs undergoing transient shape deformation during operation was explored. A phase shift phenomenon in cooling performance dependent on stretch rate, stretch extent and thermal diffusivity was discovered and explained. With the use of a time scale analysis, the extent of quasi-static assumption viability in modeling such systems was quantified and multiple shape modulation regime limits were defined. Finally, nuance considerations and future work of using liquid metal-silicone composites in SHXs were discussed.
ContributorsKotagama, Praveen (Author) / Rykaczewski, Konrad (Thesis advisor) / Wang, Robert (Committee member) / Phelan, Patrick (Committee member) / Herrmann, Marcus (Committee member) / Green, Matthew (Committee member) / Arizona State University (Publisher)
Created2020
158779-Thumbnail Image.png
Description
The primary goal of this thesis is to evaluate the influence of ethyl vinyl acetate (EVA) and polyolefin elastomer (POE) encapsulant types on the glass-glass (GG) photovoltaic (PV) module reliability. The influence of these two encapsulant types on the reliability of GG modules was compared with baseline glass-polymer backsheet (GB)

The primary goal of this thesis is to evaluate the influence of ethyl vinyl acetate (EVA) and polyolefin elastomer (POE) encapsulant types on the glass-glass (GG) photovoltaic (PV) module reliability. The influence of these two encapsulant types on the reliability of GG modules was compared with baseline glass-polymer backsheet (GB) modules for a benchmarking purpose. Three sets of modules, with four modules in each set, were constructed with two substrates types i.e. glass-glass (GG) and glass- polymer backsheet (GB); and 2 encapsulants types i.e. ethyl vinyl acetate (EVA) and polyolefin elastomer (POE). Each module set was subjected to the following accelerated tests as specified in the International Electrotechnical Commission (IEC) standard and Qualification Plus protocol of NREL: Ultraviolet (UV) 250 kWh/m2; Thermal Cycling (TC) 200 cycles; Damp Heat (DH) 1250 hours. To identify the failure modes and reliability issues of the stressed modules, several module-level non-destructive characterizations were carried out and they include colorimetry, UV-Vis-NIR spectral reflectance, ultraviolet fluorescence (UVF) imaging, electroluminescence (EL) imaging, and infrared (IR) imaging. The above-mentioned characterizations were performed on the front side of the modules both before the stress tests (i.e. pre-stress) and after the stress tests (i.e. post-stress). The UV-250 extended stress results indicated slight changes in the reflectance on the non-cell area of EVA modules probably due to minor adhesion loss at the cell and module edges. From the DH-1250 extended stress tests, significant changes, in both encapsulant types modules, were observed in reflectance and UVF images indicating early stages of delamination. In the case of the TC-200 stress test, practically no changes were observed in all sets of modules. From the above short-term stress tests, it appears although not conclusive at this stage of the analysis, delamination seems to be the only failure mode that could possibly be affecting the module performance, as observed from UV and DH extended stress tests. All these stress tests need to be continued to identify the wear-out failure modes and their impacts on the performance parameters of PV modules.
ContributorsBhaskaran, Rahul (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Phelan, Patrick (Thesis advisor) / Wang, Liping (Committee member) / Arizona State University (Publisher)
Created2020
161844-Thumbnail Image.png
Description
Thermal management is a critical aspect of microelectronics packaging and often centers around preventing central processing units (CPUs) and graphics processing units (GPUs) from overheating. As the need for power going into these processors increases, so too does the need for more effective thermal management strategies. One such strategy is

Thermal management is a critical aspect of microelectronics packaging and often centers around preventing central processing units (CPUs) and graphics processing units (GPUs) from overheating. As the need for power going into these processors increases, so too does the need for more effective thermal management strategies. One such strategy is to utilize additive manufacturing to fabricate heat sinks with bio-inspired and cellular structures and is the focus of this thesis. In this study, a process was developed for manufacturing the copper alloy CuNi2SiCr on the 100w Concept Laser Mlab laser powder bed fusion 3D printer to obtain parts that were 94% dense, while dealing with challenges of low absorptivity in copper and its high potential for oxidation. The developed process was then used to manufacture and test heat sinks with traditional pin and fin designs to establish a baseline cooling effect, as determined from tests conducted on a substrate, CPU and heat spreader assembly. Two additional heat sinks were designed, the first of these being bio-inspired and the second incorporating Triply Periodic Minimal Surface (TPMS) cellular structures, with the aim of trying to improve the cooling effect relative to commercial heat sinks. The results showed that the pure copper commercial pin-design heat sink outperformed the additive manufactured (AM) pin-design heat sink under both natural and forced convection conditions due to its approximately tenfold higher thermal conductivity, but that the gap in performance could be bridged using the bio-inspired and Schwarz-P heat sink designs developed in this work and is an encouraging indicator that further improvements could be obtained with improved alloys, heat treatments and even more innovative designs.
ContributorsYaple, Jordan Marie (Author) / Bhate, Dhruv (Thesis advisor) / Azeredo, Bruno (Committee member) / Phelan, Patrick (Committee member) / Arizona State University (Publisher)
Created2021
133434-Thumbnail Image.png
Description
Solar panels need to be both cost effective and environmentally friendly to compete with traditional energy forms. Photovoltaic recycling has the potential to mitigate the harm of waste, which is often landfilled, while putting material back into the manufacturing process. Out of many, three methods show much promise: Full Recovery

Solar panels need to be both cost effective and environmentally friendly to compete with traditional energy forms. Photovoltaic recycling has the potential to mitigate the harm of waste, which is often landfilled, while putting material back into the manufacturing process. Out of many, three methods show much promise: Full Recovery End-of-Life Photovoltaic (FRELP), mechanical, and sintering-based recycling. FRELP recycling has quickly gained prominence in Europe and promises to fully recover the components in a solar cell. The mechanical method has produced high yields of valuable materials using basic and inexpensive processes. The sintering method has the potential to tap into a large market for feldspar. Using a levelized cost of electricity (LCOE) analysis, the three methods could be compared on an economic basis. This showed that the mechanical method is least expensive, and the sintering method is the most expensive. Using this model, all recycling methods are less cost effective than the control analysis without recycling. Sensitivity analyses were then done on the effect of the discount rate, capacity factor, and lifespan on the LCOE. These results showed that the change in capacity factor had the most significant effect on the levelized cost of electricity. A final sensitivity analysis was done based on the decreased installation and balance of systems costs in 2025. With a 55% decrease in these costs, the LCOE decreased by close to $0.03/kWh for each method. Based on these results, the cost of each recycling method would be a more considerable proportion of the overall LCOE of the solar farm.
ContributorsMeister, William Frederick (Author) / Goodnick, Stephen (Thesis director) / Phelan, Patrick (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05