Matching Items (34)
Filtering by

Clear all filters

149969-Thumbnail Image.png
Description
In the search for chemical biosensors designed for patient-based physiological applications, non-invasive diagnostic approaches continue to have value. The work described in this thesis builds upon previous breath analysis studies. In particular, it seeks to assess the adsorptive mechanisms active in both acetone and ethanol biosensors designed for

In the search for chemical biosensors designed for patient-based physiological applications, non-invasive diagnostic approaches continue to have value. The work described in this thesis builds upon previous breath analysis studies. In particular, it seeks to assess the adsorptive mechanisms active in both acetone and ethanol biosensors designed for breath analysis. The thermoelectric biosensors under investigation were constructed using a thermopile for transduction and four different materials for biorecognition. The analytes, acetone and ethanol, were evaluated under dry-air and humidified-air conditions. The biosensor response to acetone concentration was found to be both repeatable and linear, while the sensor response to ethanol presence was also found to be repeatable. The different biorecognition materials produced discernible thermoelectric responses that were characteristic for each analyte. The sensor output data is presented in this report. Additionally, the results were evaluated against a mathematical model for further analysis. Ultimately, a thermoelectric biosensor based upon adsorption chemistry was developed and characterized. Additional work is needed to characterize the physicochemical action mechanism.
ContributorsWilson, Kimberly (Author) / Guilbeau, Eric (Thesis advisor) / Pizziconi, Vincent (Thesis advisor) / LaBelle, Jeffrey (Committee member) / Arizona State University (Publisher)
Created2011
Description
The action/adventure game Grad School: HGH is the final, extended version of a BME Prototyping class project in which the goal was to produce a zombie-themed game that teaches biomedical engineering concepts. The gameplay provides fast paced, exciting, and mildly addicting rooms that the player must battle and survive through,

The action/adventure game Grad School: HGH is the final, extended version of a BME Prototyping class project in which the goal was to produce a zombie-themed game that teaches biomedical engineering concepts. The gameplay provides fast paced, exciting, and mildly addicting rooms that the player must battle and survive through, followed by an engineering puzzle that must be solved in order to advance to the next room. The objective of this project was to introduce the core concepts of BME to prospective students, rather than attempt to teach an entire BME curriculum. Based on user testing at various phases in the project, we concluded that the gameplay was engaging enough to keep most users' interest through the educational puzzles, and the potential for expanding this project to reach an even greater audience is vast.
ContributorsNitescu, George (Co-author) / Medawar, Alexandre (Co-author) / Spano, Mark (Thesis director) / LaBelle, Jeffrey (Committee member) / Guiang, Kristoffer (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
Description
Volume depletion can lead to migraines, dizziness, and significant decreases in a subject's ability to physically perform. A major cause of volume depletion is dehydration, or loss in fluids due to an imbalance in fluid intake to fluid excretion. Because proper levels of hydration are necessary in order to maintain

Volume depletion can lead to migraines, dizziness, and significant decreases in a subject's ability to physically perform. A major cause of volume depletion is dehydration, or loss in fluids due to an imbalance in fluid intake to fluid excretion. Because proper levels of hydration are necessary in order to maintain both short and long term health, the ability to monitor hydration levels is growing in clinical demand. Although devices capable of monitoring hydration level exist, these devices are expensive, invasive, or inaccurate and do not offer a continuous mode of measurement. The ideal hydration monitor for consumer use needs to be characterized by its portability, affordability, and accuracy. Also, this device would need to be noninvasive and offer continuous hydration monitoring in order to accurately assess fluctuations in hydration data throughout a specified time period. One particular method for hydration monitoring that fits the majority of these criteria is known as bioelectric impedance analysis (BIA). Although current devices using BIA do not provide acceptable levels of accuracy, portability, or continuity in data collection, BIA could potentially be modified to fit many, if not all, desired customer specifications. The analysis presented here assesses the viability of using BIA as a new standard in hydration level measurement. The analysis uses data collected from 22 subjects using an existing device that employs BIA. A regression derived for estimating TBW based on the parameters of age, weight, height, sex, and impedance is presented. Using impedance data collected for each subject, a regression was also derived for estimating impedance based on the factors of age, weight, height, and sex. The derived regression was then used to calculate a new impedance value for each subject, and these new impedance values were used to estimate TBW. Through a paired-t test between the TBW values derived by using the direct measurements versus the calculated measurements of impedance, the two samples were found to be comparable. Considerations for BIA as a noninvasive measurement of hydration are discussed.
ContributorsTenorio, Jorge Antonio (Author) / LaBelle, Jeffrey (Thesis director) / Pizziconi, Vincent (Committee member) / Spano, Mark (Committee member) / Barrett, The Honors College (Contributor) / W. P. Carey School of Business (Contributor) / Harrington Bioengineering Program (Contributor)
Created2013-05
131002-Thumbnail Image.png
Description
This thesis presents a process by which a controller used for collective transport tasks is qualitatively studied and probed for presence of undesirable equilibrium states that could entrap the system and prevent it from converging to a target state. Fields of study relevant to this project include dynamic system modeling,

This thesis presents a process by which a controller used for collective transport tasks is qualitatively studied and probed for presence of undesirable equilibrium states that could entrap the system and prevent it from converging to a target state. Fields of study relevant to this project include dynamic system modeling, modern control theory, script-based system simulation, and autonomous systems design. Simulation and computational software MATLAB and Simulink® were used in this thesis.
To achieve this goal, a model of a swarm performing a collective transport task in a bounded domain featuring convex obstacles was simulated in MATLAB/ Simulink®. The closed-loop dynamic equations of this model were linearized about an equilibrium state with angular acceleration and linear acceleration set to zero. The simulation was run over 30 times to confirm system ability to successfully transport the payload to a goal point without colliding with obstacles and determine ideal operating conditions by testing various orientations of objects in the bounded domain. An additional purely MATLAB simulation was run to identify local minima of the Hessian of the navigation-like potential function. By calculating this Hessian periodically throughout the system’s progress and determining the signs of its eigenvalues, a system could check whether it is trapped in a local minimum, and potentially dislodge itself through implementation of a stochastic term in the robot controllers. The eigenvalues of the Hessian calculated in this research suggested the model local minima were degenerate, indicating an error in the mathematical model for this system, which likely incurred during linearization of this highly nonlinear system.
Created2020-12
132937-Thumbnail Image.png
Description
In the next decade or so, there will be a shift in the industry of transportation across the world. Already today we have autonomous vehicles (AVs) tested in the Greater Phoenix area showing that the technology has improved to a level available to the public eye. Although this technology is

In the next decade or so, there will be a shift in the industry of transportation across the world. Already today we have autonomous vehicles (AVs) tested in the Greater Phoenix area showing that the technology has improved to a level available to the public eye. Although this technology is not yet released commercially (for the most part), it is being used and will continue to be used to develop a safer future. With a high incidence of human error causing accidents, many expect that autonomous vehicles will be safer than human drivers. They do still require driver attention and sometimes intervention to ensure safety, but for the most part are much safer. In just the United States alone, there were 40,000 deaths due to car accidents last year [1]. If traffic fatalities were considered a disease, this would be an epidemic. The technology behind autonomous vehicles will allow for a much safer environment and increased mobility and independence for people who cannot drive and struggle with public transport. There are many opportunities for autonomous vehicles in the transportation industry. Companies can save a lot more money on shipping by cutting the costs of human drivers and trucks on the road, even allowing for simpler drop shipments should the necessary AI be developed.Research is even being done by several labs at Arizona State University. For example, Dr. Spring Berman’s Autonomous Collective Systems Lab has been collaborating with Dr. Nancy Cooke of Human Systems Engineering to develop a traffic testbed, CHARTopolis, to study the risks of driver-AV interactions and the psychological effects of AVs on human drivers on a small scale. This testbed will be used by researchers from their labs and others to develop testing on reaction, trust, and user experience with AVs in a safe environment that simulates conditions similar to those experienced by full-size AVs. Using a new type of small robot that emulates an AV, developed in Dr. Berman’s lab, participants will be able to remotely drive around a model city environment and interact with other AV-like robots using the cameras and LiDAR sensors on the remotely driven robot to guide them.
Although these commercial and research systems are still in testing, it is important to understand how AVs are being marketed to the general public and how they are perceived, so that one day they may be effectively adopted into everyday life. People do not want to see a car they do not trust on the same roads as them, so the questions are: why don’t people trust them, and how can companies and researchers improve the trustworthiness of the vehicles?
ContributorsShuster, Daniel Nadav (Author) / Berman, Spring (Thesis director) / Cooke, Nancy (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132909-Thumbnail Image.png
Description
This thesis details the design and construction of a torque-controlled robotic gripper for use with the Pheeno swarm robotics platform. This project required expertise from several fields of study including: robotic design, programming, rapid prototyping, and control theory. An electronic Inertial Measurement Unit and a DC Motor were both used

This thesis details the design and construction of a torque-controlled robotic gripper for use with the Pheeno swarm robotics platform. This project required expertise from several fields of study including: robotic design, programming, rapid prototyping, and control theory. An electronic Inertial Measurement Unit and a DC Motor were both used along with 3D printed plastic components and an electronic motor control board to develop a functional open-loop controlled gripper for use in collective transportation experiments. Code was developed that effectively acquired and filtered rate of rotation data alongside other code that allows for straightforward control of the DC motor through experimentally derived relationships between the voltage applied to the DC motor and the torque output of the DC motor. Additionally, several versions of the physical components are described through their development.
ContributorsMohr, Brennan (Author) / Berman, Spring (Thesis director) / Ren, Yi (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / School for Engineering of Matter,Transport & Enrgy (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
133580-Thumbnail Image.png
Description
In this paper, we propose an autonomous throwing and catching system to be developed as a preliminary step towards the refinement of a robotic arm capable of improving strength and motor function in the limb. This will be accomplished by first autonomizing simpler movements, such as throwing a ball. In

In this paper, we propose an autonomous throwing and catching system to be developed as a preliminary step towards the refinement of a robotic arm capable of improving strength and motor function in the limb. This will be accomplished by first autonomizing simpler movements, such as throwing a ball. In this system, an autonomous thrower will detect a desired target through the use of image processing. The launch angle and direction necessary to hit the target will then be calculated, followed by the launching of the ball. The smart catcher will then detect the ball as it is in the air, calculate its expected landing location based on its initial trajectory, and adjust its position so that the ball lands in the center of the target. The thrower will then proceed to compare the actual landing position with the position where it expected the ball to land, and adjust its calculations accordingly for the next throw. By utilizing this method of feedback, the throwing arm will be able to automatically correct itself. This means that the thrower will ideally be able to hit the target exactly in the center within a few throws, regardless of any additional uncertainty in the system. This project will focus of the controller and image processing components necessary for the autonomous throwing arm to be able to detect the position of the target at which it will be aiming, and for the smart catcher to be able to detect the position of the projectile and estimate its final landing position by tracking its current trajectory.
ContributorsLundberg, Kathie Joy (Co-author) / Thart, Amanda (Co-author) / Rodriguez, Armando (Thesis director) / Berman, Spring (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
158114-Thumbnail Image.png
Description
Suction stabilized floats have been implemented into a variety of applications such as supporting wind turbines in off-shore wind farms and for stabilizing cargo ships. This thesis proposes an alternative use for the technology in creating a system of suction stabilized floats equipped with real time location modules to hel

Suction stabilized floats have been implemented into a variety of applications such as supporting wind turbines in off-shore wind farms and for stabilizing cargo ships. This thesis proposes an alternative use for the technology in creating a system of suction stabilized floats equipped with real time location modules to help first responders establish a localized coordinate system to assist in rescues. The floats create a stabilized platform for each anchor module due to the inverse slack tank effect established by the inner water chamber. The design of the float has also been proven to be stable in most cases of amplitudes and frequencies ranging from 0 to 100 except for when the frequency ranges from 23 to 60 Hz for almost all values of the amplitude. The modules in the system form a coordinate grid based off the anchors that can track the location of a tag module within the range of the system using ultra-wideband communications. This method of location identification allows responders to use the system in GPS denied environments. The system can be accessed through an Android app with Bluetooth communications in close ranges or through internet of things (IoT) using a module as a listener, a Raspberry Pi and an internet source. The system has proven to identify the location of the tag in moderate ranges with an approximate accuracy of the tag location being 15 cm.
ContributorsDye, Michaela (Author) / Redkar, Sangram (Thesis advisor) / Sugar, Thomas (Committee member) / Rogers, Bradley (Committee member) / Arizona State University (Publisher)
Created2020
171564-Thumbnail Image.png
Description
There has been a decrease in the fertility rate over the years due to today’s younger generation facing more pressure in the workplace and their personal lives. With an aging population, more and more older people with limited mobility will require nursing care for their daily activities. There are several

There has been a decrease in the fertility rate over the years due to today’s younger generation facing more pressure in the workplace and their personal lives. With an aging population, more and more older people with limited mobility will require nursing care for their daily activities. There are several applications for wearable sensor networks presented in this paper. The study will also present a motion capture system using inertial measurement units (IMUs) and a pressure-sensing insole with a control system for gait assistance using wearable sensors. This presentation will provide details on the implementation and calibration of the pressure-sensitive insole, the IMU-based motion capture system, as well as the hip exoskeleton robot. Furthermore, the estimation of the Ground Reaction Force (GRF) from the insole design and implementation of the motion tracking using quaternion will be discussed in this document.
ContributorsLi, Xunguang (Author) / Redkar, Sangram (Thesis advisor) / Sugar, Thomas (Committee member) / Subramanian, Susheelkumar (Committee member) / Arizona State University (Publisher)
Created2022
190848-Thumbnail Image.png
Description
This work endeavors to lay a solid foundation for the exploration and the considerations of exoskeletons, exosuits, and medical devices concerning proprioceptive feedback. This investigation is situated at the nexus of engineering, neuroscience, and rehabilitation medicine, striving to cultivate a holistic understanding of how mechanical augmentation, interfaced synergistically with human

This work endeavors to lay a solid foundation for the exploration and the considerations of exoskeletons, exosuits, and medical devices concerning proprioceptive feedback. This investigation is situated at the nexus of engineering, neuroscience, and rehabilitation medicine, striving to cultivate a holistic understanding of how mechanical augmentation, interfaced synergistically with human proprioception, can foster enhanced mobility and safety. This is especially pertinent for individuals with compromised motor functions.British Neurologist Oliver Wolf Sacks in 1985 published “The Man who Mistook His Wife for a Hat” a series of his most memorable neurological case describing the brain's strangest pathways. One of these cases is “The Disembodied Lady”, Christina a 27-year-old woman that lost entirely the sense of proprioception due to polyneuropathy. This caused her to not be able to control her body, and she declares that “I feel the wind on my arms and face, and then I know, faintly, I have arms and a face. It’s not the real thing, but it’s something—it lifts this horrible, dead veil for a while. ” Finally, she was able to control her body using vision alone. Dr. Sacks introduced, for the first time, the importance of proprioception, as the sense of position of body parts relative to other parts of the body, to western culture. This document’s mission is to identify unexplored concepts in the literature regarding exoskeletons, wearables and assistive technology and a user’s proprioception, embodiment and utilization when wearing devices. Dr. Philipp Beckerle suggests the need to research the connections between wearable hardware and human sense of proprioception. He also emphasizes the need for functional assessment protocols for wearables devices and the role of embodiment. He criticizes the current commercially available upper-limb prostheses since they only restore limited functions and therefore impede embodiment. This document’s goal is to identify operative solutions through the adaptation of existing technologies and to use effective solutions to improve the quality of life of people suffering from pathologies or traumatic injuries.
ContributorsVignola, Claudio (Author) / Sugar, Thomas (Thesis advisor) / Redkar, Sangram (Committee member) / McDaniels, Troy (Committee member) / Arizona State University (Publisher)
Created2023