Matching Items (17)
Filtering by

Clear all filters

152040-Thumbnail Image.png
Description
"Sensor Decade" has been labeled on the first decade of the 21st century. Similar to the revolution of micro-computer in 1980s, sensor R&D; developed rapidly during the past 20 years. Hard workings were mainly made to minimize the size of devices with optimal the performance. Efforts to develop the small

"Sensor Decade" has been labeled on the first decade of the 21st century. Similar to the revolution of micro-computer in 1980s, sensor R&D; developed rapidly during the past 20 years. Hard workings were mainly made to minimize the size of devices with optimal the performance. Efforts to develop the small size devices are mainly concentrated around Micro-electro-mechanical-system (MEMS) technology. MEMS accelerometers are widely published and used in consumer electronics, such as smart phones, gaming consoles, anti-shake camera and vibration detectors. This study represents liquid-state low frequency micro-accelerometer based on molecular electronic transducer (MET), in which inertial mass is not the only but also the conversion of mechanical movement to electric current signal is the main utilization of the ionic liquid. With silicon-based planar micro-fabrication, the device uses a sub-micron liter electrolyte droplet sealed in oil as the sensing body and a MET electrode arrangement which is the anode-cathode-cathode-anode (ACCA) in parallel as the read-out sensing part. In order to sensing the movement of ionic liquid, an imposed electric potential was applied between the anode and the cathode. The electrode reaction, I_3^-+2e^___3I^-, occurs around the cathode which is reverse at the anodes. Obviously, the current magnitude varies with the concentration of ionic liquid, which will be effected by the movement of liquid droplet as the inertial mass. With such structure, the promising performance of the MET device design is to achieve 10.8 V/G (G=9.81 m/s^2) sensitivity at 20 Hz with the bandwidth from 1 Hz to 50 Hz, and a low noise floor of 100 ug/sqrt(Hz) at 20 Hz.
ContributorsLiang, Mengbing (Author) / Yu, Hongyu (Thesis advisor) / Jiang, Hanqing (Committee member) / Kozicki, Micheal (Committee member) / Arizona State University (Publisher)
Created2013
151351-Thumbnail Image.png
Description
Dealloying induced stress corrosion cracking is particularly relevant in energy conversion systems (both nuclear and fossil fuel) as many failures in alloys such as austenitic stainless steel and nickel-based systems result directly from dealloying. This study provides evidence of the role of unstable dynamic fracture processes in dealloying induced stress-corrosion

Dealloying induced stress corrosion cracking is particularly relevant in energy conversion systems (both nuclear and fossil fuel) as many failures in alloys such as austenitic stainless steel and nickel-based systems result directly from dealloying. This study provides evidence of the role of unstable dynamic fracture processes in dealloying induced stress-corrosion cracking of face-centered cubic alloys. Corrosion of such alloys often results in the formation of a brittle nanoporous layer which we hypothesize serves to nucleate a crack that owing to dynamic effects penetrates into the un-dealloyed parent phase alloy. Thus, since there is essentially a purely mechanical component of cracking, stress corrosion crack propagation rates can be significantly larger than that predicted from electrochemical parameters. The main objective of this work is to examine and test this hypothesis under conditions relevant to stress corrosion cracking. Silver-gold alloys serve as a model system for this study since hydrogen effects can be neglected on a thermodynamic basis, which allows us to focus on a single cracking mechanism. In order to study various aspects of this problem, the dynamic fracture properties of monolithic nanoporous gold (NPG) were examined in air and under electrochemical conditions relevant to stress corrosion cracking. The detailed processes associated with the crack injection phenomenon were also examined by forming dealloyed nanoporous layers of prescribed properties on un-dealloyed parent phase structures and measuring crack penetration distances. Dynamic fracture in monolithic NPG and in crack injection experiments was examined using high-speed (106 frames s-1) digital photography. The tunable set of experimental parameters included the NPG length scale (20-40 nm), thickness of the dealloyed layer (10-3000 nm) and the electrochemical potential (0.5-1.5 V). The results of crack injection experiments were characterized using the dual-beam focused ion beam/scanning electron microscopy. Together these tools allow us to very accurately examine the detailed structure and composition of dealloyed grain boundaries and compare crack injection distances to the depth of dealloying. The results of this work should provide a basis for new mathematical modeling of dealloying induced stress corrosion cracking while providing a sound physical basis for the design of new alloys that may not be susceptible to this form of cracking. Additionally, the obtained results should be of broad interest to researchers interested in the fracture properties of nano-structured materials. The findings will open up new avenues of research apart from any implications the study may have for stress corrosion cracking.
ContributorsSun, Shaofeng (Author) / Sieradzki, Karl (Thesis advisor) / Jiang, Hanqing (Committee member) / Peralta, Pedro (Committee member) / Arizona State University (Publisher)
Created2012
151513-Thumbnail Image.png
Description
Ball Grid Array (BGA) using lead-free or lead-rich solder materials are widely used as Second Level Interconnects (SLI) in mounting packaged components to the printed circuit board (PCB). The reliability of these solder joints is of significant importance to the performance of microelectronics components and systems. Product design/form-factor, solder material,

Ball Grid Array (BGA) using lead-free or lead-rich solder materials are widely used as Second Level Interconnects (SLI) in mounting packaged components to the printed circuit board (PCB). The reliability of these solder joints is of significant importance to the performance of microelectronics components and systems. Product design/form-factor, solder material, manufacturing process, use condition, as well as, the inherent variabilities present in the system, greatly influence product reliability. Accurate reliability analysis requires an integrated approach to concurrently account for all these factors and their synergistic effects. Such an integrated and robust methodology can be used in design and development of new and advanced microelectronics systems and can provide significant improvement in cycle-time, cost, and reliability. IMPRPK approach is based on a probabilistic methodology, focusing on three major tasks of (1) Characterization of BGA solder joints to identify failure mechanisms and obtain statistical data, (2) Finite Element analysis (FEM) to predict system response needed for life prediction, and (3) development of a probabilistic methodology to predict the reliability, as well as, the sensitivity of the system to various parameters and the variabilities. These tasks and the predictive capabilities of IMPRPK in microelectronic reliability analysis are discussed.
ContributorsFallah-Adl, Ali (Author) / Tasooji, Amaneh (Thesis advisor) / Krause, Stephen (Committee member) / Alford, Terry (Committee member) / Jiang, Hanqing (Committee member) / Mahajan, Ravi (Committee member) / Arizona State University (Publisher)
Created2013
152982-Thumbnail Image.png
Description
Damage detection in heterogeneous material systems is a complex problem and requires an in-depth understanding of the material characteristics and response under varying load and environmental conditions. A significant amount of research has been conducted in this field to enhance the fidelity of damage assessment methodologies, using a wide range

Damage detection in heterogeneous material systems is a complex problem and requires an in-depth understanding of the material characteristics and response under varying load and environmental conditions. A significant amount of research has been conducted in this field to enhance the fidelity of damage assessment methodologies, using a wide range of sensors and detection techniques, for both metallic materials and composites. However, detecting damage at the microscale is not possible with commercially available sensors. A probable way to approach this problem is through accurate and efficient multiscale modeling techniques, which are capable of tracking damage initiation at the microscale and propagation across the length scales. The output from these models will provide an improved understanding of damage initiation; the knowledge can be used in conjunction with information from physical sensors to improve the size of detectable damage. In this research, effort has been dedicated to develop multiscale modeling approaches and associated damage criteria for the estimation of damage evolution across the relevant length scales. Important issues such as length and time scales, anisotropy and variability in material properties at the microscale, and response under mechanical and thermal loading are addressed. Two different material systems have been studied: metallic material and a novel stress-sensitive epoxy polymer.

For metallic material (Al 2024-T351), the methodology initiates at the microscale where extensive material characterization is conducted to capture the microstructural variability. A statistical volume element (SVE) model is constructed to represent the material properties. Geometric and crystallographic features including grain orientation, misorientation, size, shape, principal axis direction and aspect ratio are captured. This SVE model provides a computationally efficient alternative to traditional techniques using representative volume element (RVE) models while maintaining statistical accuracy. A physics based multiscale damage criterion is developed to simulate the fatigue crack initiation. The crack growth rate and probable directions are estimated simultaneously.

Mechanically sensitive materials that exhibit specific chemical reactions upon external loading are currently being investigated for self-sensing applications. The "smart" polymer modeled in this research consists of epoxy resin, hardener, and a stress-sensitive material called mechanophore The mechanophore activation is based on covalent bond-breaking induced by external stimuli; this feature can be used for material-level damage detections. In this work Tris-(Cinnamoyl oxymethyl)-Ethane (TCE) is used as the cyclobutane-based mechanophore (stress-sensitive) material in the polymer matrix. The TCE embedded polymers have shown promising results in early damage detection through mechanically induced fluorescence. A spring-bead based network model, which bridges nanoscale information to higher length scales, has been developed to model this material system. The material is partitioned into discrete mass beads which are linked using linear springs at the microscale. A series of MD simulations were performed to define the spring stiffness in the statistical network model. By integrating multiple spring-bead models a network model has been developed to represent the material properties at the mesoscale. The model captures the statistical distribution of crosslinking degree of the polymer to represent the heterogeneous material properties at the microscale. The developed multiscale methodology is computationally efficient and provides a possible means to bridge multiple length scales (from 10 nm in MD simulation to 10 mm in FE model) without significant loss of accuracy. Parametric studies have been conducted to investigate the influence of the crosslinking degree on the material behavior. The developed methodology has been used to evaluate damage evolution in the self-sensing polymer.
ContributorsZhang, Jinjun (Author) / Chattopadhyay, Aditi (Thesis advisor) / Dai, Lenore (Committee member) / Jiang, Hanqing (Committee member) / Papandreou-Suppappola, Antonia (Committee member) / Rajadas, John (Committee member) / Arizona State University (Publisher)
Created2014
150196-Thumbnail Image.png
Description
Advanced composites are being widely used in aerospace applications due to their high stiffness, strength and energy absorption capabilities. However, the assurance of structural reliability is a critical issue because a damage event will compromise the integrity of composite structures and lead to ultimate failure. In this dissertation a novel

Advanced composites are being widely used in aerospace applications due to their high stiffness, strength and energy absorption capabilities. However, the assurance of structural reliability is a critical issue because a damage event will compromise the integrity of composite structures and lead to ultimate failure. In this dissertation a novel homogenization based multiscale modeling framework using semi-analytical micromechanics is presented to simulate the response of textile composites. The novelty of this approach lies in the three scale homogenization/localization framework bridging between the constituent (micro), the fiber tow scale (meso), weave scale (macro), and the global response. The multiscale framework, named Multiscale Generalized Method of Cells (MSGMC), continuously bridges between the micro to the global scale as opposed to approaches that are top-down and bottom-up. This framework is fully generalized and capable of modeling several different weave and braids without reformulation. Particular emphasis in this dissertation is placed on modeling the nonlinearity and failure of both polymer matrix and ceramic matrix composites.
ContributorsLiu, Guang (Author) / Chattopadhyay, Aditi (Thesis advisor) / Mignolet, Marc (Committee member) / Jiang, Hanqing (Committee member) / Li, Jian (Committee member) / Rajadas, John (Committee member) / Arizona State University (Publisher)
Created2011
150125-Thumbnail Image.png
Description
Damage assessment and residual useful life estimation (RULE) are essential for aerospace, civil and naval structures. Structural Health Monitoring (SHM) attempts to automate the process of damage detection and identification. Multiscale modeling is a key element in SHM. It not only provides important information on the physics of failure, such

Damage assessment and residual useful life estimation (RULE) are essential for aerospace, civil and naval structures. Structural Health Monitoring (SHM) attempts to automate the process of damage detection and identification. Multiscale modeling is a key element in SHM. It not only provides important information on the physics of failure, such as damage initiation and growth, the output can be used as "virtual sensing" data for detection and prognosis. The current research is part of an ongoing multidisciplinary effort to develop an integrated SHM framework for metallic aerospace components. In this thesis a multiscale model has been developed by bridging the relevant length scales, micro, meso and macro (or structural scale). Micro structural representations obtained from material characterization studies are used to define the length scales and to capture the size and orientation of the grains at the micro level. Parametric studies are conducted to estimate material parameters used in this constitutive model. Numerical and experimental simulations are performed to investigate the effects of Representative Volume Element (RVE) size, defect area fraction and distribution. A multiscale damage criterion accounting for crystal orientation effect is developed. This criterion is applied for fatigue crack initial stage prediction. A damage evolution rule based on strain energy density is modified to incorporate crystal plasticity at the microscale (local). Optimization approaches are used to calculate global damage index which is used for the RVE failure prediciton. Potential cracking directions are provided from the damage criterion simultaneously. A wave propagation model is incorporated with the damage model to detect changes in sensing signals due to plastic deformation and damage growth.
ContributorsLuo, Chuntao (Author) / Chattopadhyay, Aditi (Thesis advisor) / Papandreou-Suppappola, Antonia (Committee member) / Jiang, Hanqing (Committee member) / Dai, Lenore (Committee member) / Li, Jian (Committee member) / Arizona State University (Publisher)
Created2011
154112-Thumbnail Image.png
Description
In this thesis, an approach to develop low-frequency accelerometer based on molecular electronic transducers (MET) in an electrochemical cell is presented. Molecular electronic transducers are a class of inertial sensors which are based on an electrochemical mechanism. Motion sensors based on MET technology consist of an electrochemical cell that

In this thesis, an approach to develop low-frequency accelerometer based on molecular electronic transducers (MET) in an electrochemical cell is presented. Molecular electronic transducers are a class of inertial sensors which are based on an electrochemical mechanism. Motion sensors based on MET technology consist of an electrochemical cell that can be used to detect the movement of liquid electrolyte between electrodes by converting it to an output current. Seismometers based on MET technology are attractive for planetary applications due to their high sensitivity, low noise, small size and independence on the direction of sensitivity axis. In addition, the fact that MET based sensors have a liquid inertial mass with no moving parts makes them rugged and shock tolerant (basic survivability has been demonstrated to >20 kG).

A Zn-Cu electrochemical cell (Galvanic cell) was applied in the low-frequency accelerometer. Experimental results show that external vibrations (range from 18 to 70 Hz) were successfully detected by this accelerometer as reactions Zn→〖Zn〗^(2+)+2e^- occurs around the anode and 〖Cu〗^(2+)+2e^-→Cu around the cathode. Accordingly, the sensitivity of this MET device design is to achieve 10.4 V/G at 18 Hz. And the sources of noise have been analyzed.
ContributorsZhao, Zuofeng (Author) / Yu, Hongyu (Thesis advisor) / Zhang, Junshan (Committee member) / Jiang, Hanqing (Committee member) / Arizona State University (Publisher)
Created2015
156272-Thumbnail Image.png
Description
With the maturity of advanced composites as feasible structural materials for various applications there is a critical need to solve the challenge of designing these material systems for optimal performance. However, determining superior design methods requires a deep understanding of the material-structure properties at various length scales. Due to the

With the maturity of advanced composites as feasible structural materials for various applications there is a critical need to solve the challenge of designing these material systems for optimal performance. However, determining superior design methods requires a deep understanding of the material-structure properties at various length scales. Due to the length-scale dependent behavior of advanced composites, multiscale modeling techniques may be used to describe the dominant mechanisms of damage and failure in these material systems. With polymer matrix fiber composites and nanocomposites it becomes essential to include even the atomic length scale, where the resin-hardener-nanofiller molecules interact, in the multiscale modeling framework. Additionally, sources of variability are also critical to be included in these models due to the important role of uncertainty in advance composite behavior. Such a methodology should be able to describe length scale dependent mechanisms in a computationally efficient manner for the analysis of practical composite structures.

In the research presented in this dissertation, a comprehensive nano to macro multiscale framework is developed for the mechanical and multifunctional analysis of advanced composite materials and structures. An atomistically informed statistical multiscale model is developed for linear problems, to estimate and scale elastic properties of carbon fiber reinforced polymer composites (CFRPs) and carbon nanotube (CNT) enhanced CFRPs using information from molecular dynamics simulation of the resin-hardener-nanofiller nanoscale system. For modeling inelastic processes, an atomistically informed coupled damage-plasticity model is developed using the framework of continuum damage mechanics, where fundamental nanoscale covalent bond disassociation information is scaled up as a continuum scale damage identifying parameter. This damage model is coupled with a nanocomposite microstructure generation algorithm to study the sub-microscale damage mechanisms in CNT/CFRP microstructures. It is further integrated in a generalized method of cells (GMC) micromechanics model to create a low-fidelity computationally efficient nonlinear multiscale method with imperfect interfaces between the fiber and matrix, where the interface behavior is adopted from nanoscale MD simulations. This algorithm is used to understand damage mechanisms in adhesively bonded composite joints as a case study for the comprehensive nano to macroscale structural analysis of practical composites structures. At each length scale sources of variability are identified, characterized, and included in the multiscale modeling framework.
ContributorsRai, Ashwin (Author) / Chattopadhyay, Aditi (Thesis advisor) / Dai, Lenore (Committee member) / Jiang, Hanqing (Committee member) / Rajadas, John (Committee member) / Fard, Masoud Yekani (Committee member) / Arizona State University (Publisher)
Created2018
133492-Thumbnail Image.png
Description
This thesis examines the mechanical properties of an origami inspired structure and its equivalent cube counterpart to determine if this origami configuration is an effective load bearing and energy absorption structure. To test this, a folded paper model was created for visual realization and then 3D printed models were created

This thesis examines the mechanical properties of an origami inspired structure and its equivalent cube counterpart to determine if this origami configuration is an effective load bearing and energy absorption structure. To test this, a folded paper model was created for visual realization and then 3D printed models were created to undergo compression testing using the Instron 4411. The data from testing was used to create stress-strain curves for each sample, which were then used to determine the maximum stress and toughness of each structure. The performance of these structures was also compared to other known material performance. The origami structure was found to outperform the equivalent cube in both maximum stress it could withstand before failure and toughness. These results are grounds for further research to be done to determine the validity of origami structures as viable alternatives to current material configurations.
ContributorsFong, Jessica (Author) / Jiang, Hanqing (Thesis director) / Kingsbury, Dallas (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134889-Thumbnail Image.png
Description
The purpose of this project focuses on analyzing how a typically brittle material, such as PLA, can be manipulated to become deformable, through the development of an origami structure, in this case—the Yoshimuri pattern. The experimental methodology focused on creating a base Solidworks model, with varying hinge depths, and 3D

The purpose of this project focuses on analyzing how a typically brittle material, such as PLA, can be manipulated to become deformable, through the development of an origami structure, in this case—the Yoshimuri pattern. The experimental methodology focused on creating a base Solidworks model, with varying hinge depths, and 3D printing these various models. A cylindrical shell was also developed with comparable dimensions to the Yoshimuri dimensions. These samples were then tested through compression testing, with the load-displacement, and thus the stress-strain curves are analyzed. From the results, it was found that generally, the Yoshimuri samples had a higher level of deformation compared to the cylindrical shell. Moreover, the cylindrical shell had a higher stiffness ratio, while the Yoshimuri patterns had strain rates as high as 16%. From this data, it can be concluded that by changing how the structure is created through origami patterns, it is possible to shift the characteristics of a structure even if the material properties are initially quite brittle.
ContributorsSundar, Vaasavi (Author) / Jiang, Hanqing (Thesis director) / Kingsbury, Dallas (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / School of Social Transformation (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12