Matching Items (7)
Filtering by

Clear all filters

151528-Thumbnail Image.png
Description
The heat transfer enhancements available from expanding the cross-section of a boiling microchannel are explored analytically and experimentally. Evaluation of the literature on critical heat flux in flow boiling and associated pressure drop behavior is presented with predictive critical heat flux (CHF) and pressure drop correlations. An optimum channel configuration

The heat transfer enhancements available from expanding the cross-section of a boiling microchannel are explored analytically and experimentally. Evaluation of the literature on critical heat flux in flow boiling and associated pressure drop behavior is presented with predictive critical heat flux (CHF) and pressure drop correlations. An optimum channel configuration allowing maximum CHF while reducing pressure drop is sought. A perturbation of the channel diameter is employed to examine CHF and pressure drop relationships from the literature with the aim of identifying those adequately general and suitable for use in a scenario with an expanding channel. Several CHF criteria are identified which predict an optimizable channel expansion, though many do not. Pressure drop relationships admit improvement with expansion, and no optimum presents itself. The relevant physical phenomena surrounding flow boiling pressure drop are considered, and a balance of dimensionless numbers is presented that may be of qualitative use. The design, fabrication, inspection, and experimental evaluation of four copper microchannel arrays of different channel expansion rates with R-134a refrigerant is presented. Optimum rates of expansion which maximize the critical heat flux are considered at multiple flow rates, and experimental results are presented demonstrating optima. The effect of expansion on the boiling number is considered, and experiments demonstrate that expansion produces a notable increase in the boiling number in the region explored, though no optima are observed. Significant decrease in the pressure drop across the evaporator is observed with the expanding channels, and no optima appear. Discussion of the significance of this finding is presented, along with possible avenues for future work.
ContributorsMiner, Mark (Author) / Phelan, Patrick E (Thesis advisor) / Baer, Steven (Committee member) / Chamberlin, Ralph (Committee member) / Chen, Kangping (Committee member) / Herrmann, Marcus (Committee member) / Arizona State University (Publisher)
Created2013
150341-Thumbnail Image.png
Description
A numerical study of incremental spin-up and spin-up from rest of a thermally- stratified fluid enclosed within a right circular cylinder with rigid bottom and side walls and stress-free upper surface is presented. Thermally stratified spin-up is a typical example of baroclinity, which is initiated by a sudden increase in

A numerical study of incremental spin-up and spin-up from rest of a thermally- stratified fluid enclosed within a right circular cylinder with rigid bottom and side walls and stress-free upper surface is presented. Thermally stratified spin-up is a typical example of baroclinity, which is initiated by a sudden increase in rotation rate and the tilting of isotherms gives rise to baroclinic source of vorticity. Research by (Smirnov et al. [2010a]) showed the differences in evolution of instabilities when Dirichlet and Neumann thermal boundary conditions were applied at top and bottom walls. Study of parametric variations carried out in this dissertation confirmed the instability patterns observed by them for given aspect ratio and Rossby number values greater than 0.5. Also results reveal that flow maintained axisymmetry and stability for short aspect ratio containers independent of amount of rotational increment imparted. Investigation on vorticity components provides framework for baroclinic vorticity feedback mechanism which plays important role in delayed rise of instabilities when Dirichlet thermal Boundary Conditions are applied.
ContributorsKher, Aditya Deepak (Author) / Chen, Kangping (Thesis advisor) / Huang, Huei-Ping (Committee member) / Herrmann, Marcus (Committee member) / Arizona State University (Publisher)
Created2011
149785-Thumbnail Image.png
Description
Microchannel heat sinks can possess heat transfer characteristics unavailable in conventional heat exchangers; such sinks offer compact solutions to otherwise intractable thermal management problems, notably in small-scale electronics cooling. Flow boiling in microchannels allows a very high heat transfer rate, but is bounded by the critical heat flux (CHF). This

Microchannel heat sinks can possess heat transfer characteristics unavailable in conventional heat exchangers; such sinks offer compact solutions to otherwise intractable thermal management problems, notably in small-scale electronics cooling. Flow boiling in microchannels allows a very high heat transfer rate, but is bounded by the critical heat flux (CHF). This thesis presents a theoretical-numerical study of a method to improve the heat rejection capability of a microchannel heat sink via expansion of the channel cross-section along the flow direction. The thermodynamic quality of the refrigerant increases during flow boiling, decreasing the density of the bulk coolant as it flows. This may effect pressure fluctuations in the channels, leading to nonuniform heat transfer and local dryout in regions exceeding CHF. This undesirable phenomenon is counteracted by permitting the cross-section of the microchannel to increase along the direction of flow, allowing more volume for the vapor. Governing equations are derived from a control-volume analysis of a single heated rectangular microchannel; the cross-section is allowed to expand in width and height. The resulting differential equations are solved numerically for a variety of channel expansion profiles and numbers of channels. The refrigerant is R-134a and channel parameters are based on a physical test bed in a related experiment. Significant improvement in CHF is possible with moderate area expansion. Minimal additional manufacturing costs could yield major gains in the utility of microchannel heat sinks. An optimum expansion rate occurred in certain cases, and alterations in the channel width are, in general, more effective at improving CHF than alterations in the channel height. Modest expansion in height enables small width expansions to be very effective.
ContributorsMiner, Mark (Author) / Phelan, Patrick E (Thesis advisor) / Herrmann, Marcus (Committee member) / Chen, Kangping (Committee member) / Arizona State University (Publisher)
Created2011
153954-Thumbnail Image.png
Description
Many physical phenomena and industrial applications involve multiphase fluid flows and hence it is of high importance to be able to simulate various aspects of these flows accurately. The Dynamic Contact Angles (DCA) and the contact lines at the wall boundaries are a couple of such important aspects. In the

Many physical phenomena and industrial applications involve multiphase fluid flows and hence it is of high importance to be able to simulate various aspects of these flows accurately. The Dynamic Contact Angles (DCA) and the contact lines at the wall boundaries are a couple of such important aspects. In the past few decades, many mathematical models were developed for predicting the contact angles of the inter-face with the wall boundary under various flow conditions. These models are used to incorporate the physics of DCA and contact line motion in numerical simulations using various interface capturing/tracking techniques. In the current thesis, a simple approach to incorporate the static and dynamic contact angle boundary conditions using the level set method is developed and implemented in multiphase CFD codes, LIT (Level set Interface Tracking) (Herrmann (2008)) and NGA (flow solver) (Desjardins et al (2008)). Various DCA models and associated boundary conditions are reviewed. In addition, numerical aspects such as the occurrence of a stress singularity at the contact lines and grid convergence of macroscopic interface shape are dealt with in the context of the level set approach.
ContributorsPendota, Premchand (Author) / Herrmann, Marcus (Thesis advisor) / Rykaczewski, Konrad (Committee member) / Chen, Kangping (Committee member) / Arizona State University (Publisher)
Created2015
153834-Thumbnail Image.png
Description
First, in a large-scale structure, a 3-D CFD model was built to simulate flow and temperature distributions. The flow patterns and temperature distributions are characterized and validated through spot measurements. The detailed understanding of them then allows for optimization of the HVAC configuration because identification of the problematic flow patterns

First, in a large-scale structure, a 3-D CFD model was built to simulate flow and temperature distributions. The flow patterns and temperature distributions are characterized and validated through spot measurements. The detailed understanding of them then allows for optimization of the HVAC configuration because identification of the problematic flow patterns and temperature mis-distributions leads to some corrective measures. Second, an appropriate form of the viscous dissipation term in the integral form of the conservation equation was considered, and the effects of momentum terms on the computed drop size in pressure-atomized sprays were examined. The Sauter mean diameter (SMD) calculated in this manner agrees well with experimental data of the drop velocities and sizes. Using the suggested equation with the revised treatment of liquid momentum setup, injection parameters can be directly input to the system of equations. Thus, this approach is capable of incorporating the effects of injection parameters for further considerations of the drop and velocity distributions under a wide range of spray geometry and injection conditions. Lastly, groundwater level estimation was investigated using compressed sensing (CS). To satisfy a general property of CS, a random measurement matrix was used, the groundwater network was constructed, and finally the l-1 optimization was run. Through several validation tests, correct estimation of groundwater level by CS was shown. Using this setup, decreasing trends in groundwater level in the southwestern US was shown. The suggested method is effective in that the total measurements of registered wells can be reduced down by approximately 42 %, sparse data can be visualized and a possible approach for groundwater management during extreme weather changes, e.g. in California, was demonstrated.
ContributorsLee, Joon Young (Author) / Lee, Taewoo (Thesis advisor) / Huang, Huei-Ping (Committee member) / Lopez, Juan (Committee member) / Phelan, Patrick (Committee member) / Chen, Kangping (Committee member) / Arizona State University (Publisher)
Created2015
135299-Thumbnail Image.png
Description
Essential to the field of petroleum engineering, well testing is done to determine the important physical characteristics of a reservoir. In the case of a constant production rate (as opposed to a constant pressure), the well pressure drop is a function of both time and the formation's boundary conditions. This

Essential to the field of petroleum engineering, well testing is done to determine the important physical characteristics of a reservoir. In the case of a constant production rate (as opposed to a constant pressure), the well pressure drop is a function of both time and the formation's boundary conditions. This pressure drop goes through several distinct stages before reaching steady state or semi-steady state production. This paper focuses on the analysis of a circular well with a closed outer boundary and details the derivation of a new approximation, intended for the transient stage, from an existing steady state solution. This new approximation is then compared to the numerical solution as well as an existing approximate solution. The new approximation is accurate with a maximum 10% margin of error well into the semi-steady state phase with that error decreasing significantly as the distance to the closed external boundary increases. More accurate over a longer period of time than the existing line source approximation, the relevance and applications of this new approximate solution deserve further exploration.
ContributorsKelso, Sean Andrew (Author) / Chen, Kangping (Thesis director) / Liao, Yabin (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / School of Music (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
157707-Thumbnail Image.png
Description
This dissertation studies two outstanding microscale fluid mechanics problems: 1) mechanisms of gas production from the nanopores of shale; 2) enhanced mass flow rate in steady compressible gas flow through a micro-conduit.

The dissertation starts with a study of a volumetric expansion driven drainage flow of a viscous compressible fluid from

This dissertation studies two outstanding microscale fluid mechanics problems: 1) mechanisms of gas production from the nanopores of shale; 2) enhanced mass flow rate in steady compressible gas flow through a micro-conduit.

The dissertation starts with a study of a volumetric expansion driven drainage flow of a viscous compressible fluid from a small capillary and channel in the low Mach number limit. An analysis based on the linearized compressible Navier-Stokes equations with no-slip condition shows that fluid drainage is controlled by the slow decay of the acoustic wave inside the capillary and the no-slip flow exhibits a slip-like mass flow rate. Numerical simulations are also carried out for drainage from a small capillary to a reservoir or a contraction of finite size. By allowing the density wave to escape the capillary, two wave leakage mechanisms are identified, which are dependent on the capillary length to radius ratio, reservoir size and acoustic Reynolds number. Empirical functions are generated for an effective diffusive coefficient which allows simple calculations of the drainage rate using a diffusion model without the presence of the reservoir or contraction.

In the second part of the dissertation, steady viscous compressible flow through a micro-conduit is studied using compressible Navier-Stokes equations with no-slip condition. The mathematical theory of Klainerman and Majda for low Mach number flow is employed to derive asymptotic equations in the limit of small Mach number. The overall flow, a combination of the Hagen-Poiseuille flow and a diffusive velocity shows a slip-like mass flow rate even through the overall velocity satisfies the no-slip condition. The result indicates that the classical formulation includes self-diffusion effect and it embeds the Extended Navier-Stokes equation theory (ENSE) without the need of introducing additional constitutive hypothesis or assuming slip on the boundary. Contrary to most ENSE publications, the predicted mass flow rate is still significantly below the measured data based on an extensive comparison with thirty-five experiments.
ContributorsShen, Di (Author) / Chen, Kangping (Thesis advisor) / Herrmann, Marcus (Committee member) / Huang, Huei-Ping (Committee member) / Calhoun, Ronald (Committee member) / Lopez, Juan (Committee member) / Arizona State University (Publisher)
Created2019