Matching Items (11)
Filtering by

Clear all filters

152197-Thumbnail Image.png
Description
Microelectronic industry is continuously moving in a trend requiring smaller and smaller devices and reduced form factors with time, resulting in new challenges. Reduction in device and interconnect solder bump sizes has led to increased current density in these small solders. Higher level of electromigration occurring due to increased current

Microelectronic industry is continuously moving in a trend requiring smaller and smaller devices and reduced form factors with time, resulting in new challenges. Reduction in device and interconnect solder bump sizes has led to increased current density in these small solders. Higher level of electromigration occurring due to increased current density is of great concern affecting the reliability of the entire microelectronics systems. This paper reviews electromigration in Pb- free solders, focusing specifically on Sn0.7wt.% Cu solder joints. Effect of texture, grain orientation, and grain-boundary misorientation angle on electromigration and intermetallic compound (IMC) formation is studied through EBSD analysis performed on actual C4 bumps.
ContributorsLara, Leticia (Author) / Tasooji, Amaneh (Thesis advisor) / Lee, Kyuoh (Committee member) / Krause, Stephen (Committee member) / Arizona State University (Publisher)
Created2013
151513-Thumbnail Image.png
Description
Ball Grid Array (BGA) using lead-free or lead-rich solder materials are widely used as Second Level Interconnects (SLI) in mounting packaged components to the printed circuit board (PCB). The reliability of these solder joints is of significant importance to the performance of microelectronics components and systems. Product design/form-factor, solder material,

Ball Grid Array (BGA) using lead-free or lead-rich solder materials are widely used as Second Level Interconnects (SLI) in mounting packaged components to the printed circuit board (PCB). The reliability of these solder joints is of significant importance to the performance of microelectronics components and systems. Product design/form-factor, solder material, manufacturing process, use condition, as well as, the inherent variabilities present in the system, greatly influence product reliability. Accurate reliability analysis requires an integrated approach to concurrently account for all these factors and their synergistic effects. Such an integrated and robust methodology can be used in design and development of new and advanced microelectronics systems and can provide significant improvement in cycle-time, cost, and reliability. IMPRPK approach is based on a probabilistic methodology, focusing on three major tasks of (1) Characterization of BGA solder joints to identify failure mechanisms and obtain statistical data, (2) Finite Element analysis (FEM) to predict system response needed for life prediction, and (3) development of a probabilistic methodology to predict the reliability, as well as, the sensitivity of the system to various parameters and the variabilities. These tasks and the predictive capabilities of IMPRPK in microelectronic reliability analysis are discussed.
ContributorsFallah-Adl, Ali (Author) / Tasooji, Amaneh (Thesis advisor) / Krause, Stephen (Committee member) / Alford, Terry (Committee member) / Jiang, Hanqing (Committee member) / Mahajan, Ravi (Committee member) / Arizona State University (Publisher)
Created2013
Description
As the demand for power increases in populated areas, so will the demand for water. Current power plant technology relies heavily on the Rankine cycle in coal, nuclear and solar thermal power systems which ultimately use condensers to cool the steam in the system. In dry climates, the amount of

As the demand for power increases in populated areas, so will the demand for water. Current power plant technology relies heavily on the Rankine cycle in coal, nuclear and solar thermal power systems which ultimately use condensers to cool the steam in the system. In dry climates, the amount of water to cool off the condenser can be extremely large. Current wet cooling technologies such as cooling towers lose water from evaporation. One alternative to prevent this would be to implement a radiative cooling system. More specifically, a system that utilizes the volumetric radiation emission from water to the night sky could be implemented. This thesis analyzes the validity of a radiative cooling system that uses direct radiant emission to cool water. A brief study on potential infrared transparent cover materials such as polyethylene (PE) and polyvinyl carbonate (PVC) was performed. Also, two different experiments to determine the cooling power from radiation were developed and run. The results showed a minimum cooling power of 33.7 W/m2 for a vacuum insulated glass system and 37.57 W/m2 for a tray system with a maximum of 98.61 Wm-2 at a point when conduction and convection heat fluxes were considered to be zero. The results also showed that PE proved to be the best cover material. The minimum numerical results compared well with other studies performed in the field using similar techniques and materials. The results show that a radiative cooling system for a power plant could be feasible given that the cover material selection is narrowed down, an ample amount of land is available and an economic analysis is performed proving it to be cost competitive with conventional systems.
ContributorsOvermann, William (Author) / Phelan, Patrick (Thesis advisor) / Trimble, Steve (Committee member) / Taylor, Robert (Committee member) / Arizona State University (Publisher)
Created2011
150392-Thumbnail Image.png
Description
In this thesis the performance of a Hybrid AC System (HACS) is modeled and optimized. The HACS utilizes solar photovoltaic (PV) panels to help reduce the demand from the utility during peak hours. The system also includes an ice Thermal Energy Storage (TES) tank to accumulate cooling energy during off-peak

In this thesis the performance of a Hybrid AC System (HACS) is modeled and optimized. The HACS utilizes solar photovoltaic (PV) panels to help reduce the demand from the utility during peak hours. The system also includes an ice Thermal Energy Storage (TES) tank to accumulate cooling energy during off-peak hours. The AC runs continuously on grid power during off-peak hours to generate cooling for the house and to store thermal energy in the TES. During peak hours, the AC runs on the power supplied from the PV, and cools the house along with the energy stored in the TES. A higher initial cost is expected due to the additional components of the HACS (PV and TES), but a lower operational cost due to higher energy efficiency, energy storage and renewable energy utilization. A house cooled by the HACS will require a smaller size AC unit (about 48% less in the rated capacity), compared to a conventional AC system. To compare the cost effectiveness of the HACS with a regular AC system, time-of-use (TOU) utility rates are considered, as well as the cost of the system components and the annual maintenance. The model shows that the HACS pays back its initial cost of $28k in about 6 years with an 8% APR, and saves about $45k in total cost when compared to a regular AC system that cools the same house for the same period of 6 years.
ContributorsJubran, Sadiq (Author) / Phelan, Patrick (Thesis advisor) / Calhoun, Ronald (Committee member) / Trimble, Steve (Committee member) / Arizona State University (Publisher)
Created2011
150501-Thumbnail Image.png
Description
Recent literature indicates potential benefits in microchannel cooling if an inlet orifice is used to suppress pressure oscillations that develop under two-phase conditions. This study investigates the costs and benefits of using an adjustable microchannel inlet orifice. The focus is on orifice effect during steady-state boiling and critical heat flux

Recent literature indicates potential benefits in microchannel cooling if an inlet orifice is used to suppress pressure oscillations that develop under two-phase conditions. This study investigates the costs and benefits of using an adjustable microchannel inlet orifice. The focus is on orifice effect during steady-state boiling and critical heat flux (CHF) in the channels using R134a in a pumped refrigerant loop (PRL). To change orifice size, a dam controlled with a micrometer was placed in front of 31 parallel microchannels. Each channel had a hydraulic diameter of 0.235 mm and a length of 1.33 cm. For steady state two-phase conditions, mass fluxes of 300 kg m-2 s-1 and 600 kg m-2 s-1were investigated. For orifice sizes with a hydraulic diameter to unrestricted hydraulic diameter (Dh:Dh,ur) ratio less than 35 percent, oscillations were reduced and wall temperatures fell up to 1.5 °C. Critical heat flux data were obtained for 7 orifice sizes with mass fluxes from 186 kg m-2 s-1 to 847 kg m-2 s-1. For all mass fluxes and inlet conditions tested, CHF values for a Dh:Dh,ur ratio of 1.8 percent became increasingly lower (up to 37 W cm-2 less) than those obtained with larger orifices. An optimum orifice size with Dh:Dh,ur of 35 percent emerged, offering up to 5 W cm-2 increase in CHF over unrestricted conditions at the highest mass flux tested, 847 kg m-2 s-1. These improvements in cooling ability with inlet orifices in place under both steady-state and impending CHF conditions are modest, leading to the conclusion that inlet orifices are only mildly effective at improving heat transfer coefficients. Stability of the PRL used for experimentation was also studied and improved. A vapor compression cycle's (VCC) proportional, integral, and derivative controller was found to adversely affect stability within the PRL and cause premature CHF. Replacing the VCC with an ice water heat sink maintained steady pumped loop system pressures and mass flow rates. The ice water heat sink was shown to have energy cost savings over the use of a directly coupled VCC for removing heat from the PRL.
ContributorsOdom, Brent A (Author) / Phelan, Patrick E (Thesis advisor) / Herrmann, Marcus (Committee member) / Trimble, Steve (Committee member) / Tasooji, Amaneh (Committee member) / Holcomb, Don (Committee member) / Arizona State University (Publisher)
Created2012
151100-Thumbnail Image.png
Description
The ability to shift the photovoltaic (PV) power curve and make the energy accessible during peak hours can be accomplished through pairing solar PV with energy storage technologies. A prototype hybrid air conditioning system (HACS), built under supervision of project head Patrick Phelan, consists of PV modules running a DC

The ability to shift the photovoltaic (PV) power curve and make the energy accessible during peak hours can be accomplished through pairing solar PV with energy storage technologies. A prototype hybrid air conditioning system (HACS), built under supervision of project head Patrick Phelan, consists of PV modules running a DC compressor that operates a conventional HVAC system paired with a second evaporator submerged within a thermal storage tank. The thermal storage is a 0.284m3 or 75 gallon freezer filled with Cryogel balls, submerged in a weak glycol solution. It is paired with its own separate air handler, circulating the glycol solution. The refrigerant flow is controlled by solenoid valves that are electrically connected to a high and low temperature thermostat. During daylight hours, the PV modules run the DC compressor. The refrigerant flow is directed to the conventional HVAC air handler when cooling is needed. Once the desired room temperature is met, refrigerant flow is diverted to the thermal storage, storing excess PV power. During peak energy demand hours, the system uses only small amounts of grid power to pump the glycol solution through the air handler (note the compressor is off), allowing for money and energy savings. The conventional HVAC unit can be scaled down, since during times of large cooling demands the glycol air handler can be operated in parallel with the conventional HVAC unit. Four major test scenarios were drawn up in order to fully comprehend the performance characteristics of the HACS. Upon initial running of the system, ice was produced and the thermal storage was charged. A simple test run consisting of discharging the thermal storage, initially ~¼ frozen, was performed. The glycol air handler ran for 6 hours and the initial cooling power was 4.5 kW. This initial test was significant, since greater than 3.5 kW of cooling power was produced for 3 hours, thus demonstrating the concept of energy storage and recovery.
ContributorsPeyton-Levine, Tobin (Author) / Phelan, Patrick (Thesis advisor) / Trimble, Steve (Committee member) / Wang, Robert (Committee member) / Arizona State University (Publisher)
Created2012
150990-Thumbnail Image.png
Description
The world of healthcare can be seen as dynamic, often an area where technology and science meet to consummate a greater good for humanity. This relationship has been working well for the last century as evident by the average life expectancy change. For the greater of the last five decades

The world of healthcare can be seen as dynamic, often an area where technology and science meet to consummate a greater good for humanity. This relationship has been working well for the last century as evident by the average life expectancy change. For the greater of the last five decades the average life expectancy at birth increased globally by almost 20 years. In the United States specifically, life expectancy has grown from 50 years in 1900 to 78 years in 2009. That is a 76% increase in just over a century. As great as this increase sounds for humanity it means there are soon to be real issues in the healthcare world. A larger older population will need more healthcare services but have fewer young professionals to provide those services. Technology and science will need to continue to push the boundaries in order to develop and provide the solutions needed to continue providing the aging world population sufficient healthcare. One solution sure to help provide a brighter future for healthcare is mobile health (m-health). M-health can help provide a means for healthcare professionals to treat more patients with less work expenditure and do so with more personalized healthcare advice which will lead to better treatments. This paper discusses one area of m-health devices specifically; human breath analysis devices. The current laboratory methods of breath analysis and why these methods are not adequate for common healthcare practices will be discussed in more detail. Then more specifically, mobile breath analysis devices are discussed. The topic will encompass the challenges that need to be met in developing such devices, possible solutions to these challenges, two real examples of mobile breath analysis devices and finally possible future directions for m-health technologies.
ContributorsLester, Bryan (Author) / Forzani, Erica (Thesis advisor) / Xian, Xiaojun (Committee member) / Trimble, Steve (Committee member) / Arizona State University (Publisher)
Created2012
150926-Thumbnail Image.png
Description
This thesis discusses the evolution of conduction mechanism in the silver (Ag) on zinc oxide (ZnO) thin film system with respect to the Ag morphology. As a plausible substitute for indium tin oxide (ITO), TCO/Metal/TCO (TMT) structure has received a lot of attentions as a prospective ITO substitute due to

This thesis discusses the evolution of conduction mechanism in the silver (Ag) on zinc oxide (ZnO) thin film system with respect to the Ag morphology. As a plausible substitute for indium tin oxide (ITO), TCO/Metal/TCO (TMT) structure has received a lot of attentions as a prospective ITO substitute due to its low resistivity and desirable transmittance. However, the detailed conduction mechanism is not fully understood. In an attempt to investigate the conduction mechanism of the ZnO/Ag/ZnO thin film system with respect to the Ag microstructure, the top ZnO layer is removed, which offers a better view of Ag morphology by using scanning electron microscopy (SEM). With 2 nm thick Ag layer, it is seen that the Ag forms discrete islands with small islands size (r), but large separation (s); also the effective resistivity of the system is extremely high. This regime is designated as dielectric zone. In this regime, thermionic emission and activated tunneling conduction mechanisms are considered. Based on simulations, when "s" was beyond 6 nm, thermionic emission dominates; with "s" less than 6 nm, activated tunneling is the dominating mechanism. As the Ag thickness increases, the individual islands coalesce and Ag clusters are formed. At certain Ag thickness, there are one or several Ag clusters that percolate the ZnO film, and the effective resistivity of the system exhibits a tremendous drop simultaneously, because the conducting electrons do not need to overcome huge ZnO barrier to transport. This is recognized as percolation zone. As the Ag thickness grows, Ag film becomes more continuous and there are no individual islands left on the surface. The effective resistivity decreases and is comparable to the characteristics of metallic materials, so this regime is categorized as metallic zone. The simulation of the Ag thin film resistivity is performed in terms of Ag thickness, and the experimental data fits the simulation well, which supports the proposed models. Hall measurement and four point probe measurement are carried out to characterize the electrical properties of the thin film system.
ContributorsZhang, Shengke (Author) / Alford, Terry L. (Thesis advisor) / Schroder, Dieter K. (Committee member) / Tasooji, Amaneh (Committee member) / Arizona State University (Publisher)
Created2012
156327-Thumbnail Image.png
Description
Energy production is driven by economic needs, which sometimes results in the environment and wildlife being an afterthought. Unfortunately, many animals are killed as a result of flying too close to wind turbines, and the addition of animal deterrent devices are a promising alternative. This thesis seeks to provide a

Energy production is driven by economic needs, which sometimes results in the environment and wildlife being an afterthought. Unfortunately, many animals are killed as a result of flying too close to wind turbines, and the addition of animal deterrent devices are a promising alternative. This thesis seeks to provide a solution as a part of post- construction considerations regarding wildlife and wind turbine interactions through the introduction of a blade mounted ecological device. After testing the hypothesis, the data revealed the device is effective for increasing power output when placed at the root, middle, and tip of the blade. The middle position yielded the lowest increase at all speeds tested. The device was designed and attached to blades along the estimated line of separation. The blades were then mounted on a tower and tested with wind speed as an input and power as an output. The data was analyzed by fixing speed as a parameter and then looking at the distribution of the power output data. A comparison of blades with and without the device demonstrates a potential for increasing power output by 144% when the device is attached at the blade’s root, 7.5% in the middle, and 21% near the tip. The analysis for this study was descoped due to the constraints of the system to be scaled up. As such, this analysis will hold for turbines with a blade length of no more than approximately eight feet. Blades of this type would be used in single building energy grid supplement turbines or turbines in areas with power requirements of equal or less than 1kW per turbine installed. Single building energy grid supplement turbines are most often mounted to the tops of buildings and take advantage of higher speeds of wind at those heights. As the ecological devices are designed to be similar to vortex generators, which have been tested on large blades, their addition to large blades could prove to have a similar effect.

Keywords: Wind turbine ecosystem, post-construction turbine considerations, wildlife deterrents
ContributorsBooth, Stephanie (Author) / Trimble, Steve (Thesis advisor) / Middleton, James (Thesis advisor) / Huang, Huei-Ping (Committee member) / Arizona State University (Publisher)
Created2018
155242-Thumbnail Image.png
Description
The microstructure development of Inconel alloy 718 (IN718) during conventional processing has been extensively studied and much has been discovered as to the mechanisms behind the exceptional creep resistance that the alloy exhibits. More recently with the development of large scale 3D printing of alloys such as IN718 a new

The microstructure development of Inconel alloy 718 (IN718) during conventional processing has been extensively studied and much has been discovered as to the mechanisms behind the exceptional creep resistance that the alloy exhibits. More recently with the development of large scale 3D printing of alloys such as IN718 a new dimension of complexity has emerged in the understanding of alloy microstructure development, hence, potential alloy development opportunity for IN718.

This study is a broad stroke at discovering possible alternate microstructures developing in Direct-Metal-Laser-Sintering (DMLS) processed IN718 compared to those in conventional wrought IN718. The main inspiration for this study came from creep test results from several DMLS IN718 samples at Honeywell that showed a significant

improvement in creep capabilities for DMLS718 compared to cast and wrought IN718 (Honeywell).

From this data the steady-state creep rates were evaluated and fitted to current creep models in order to identify active creep mechanisms in conventional and DMLS IN718 and illuminate the potential factors responsible for the improved creep behavior in DMSL processed IN718.

Because rapid heating and cooling can introduce high internal stress and impact microstructural development, such as gamma double prime formations (Oblak et al.), leading to differences in material behavior, DMLS and conventional IN718 materials are studied using SEM and TEM characterization to investigate sub-micron and/or nano-scale

microstructural differences developed in the DMLS samples as a result of their complex thermal history and internal stress.

The preliminary analysis presented in this body of work is an attempt to better understand the effect of DMLS processing in quest for development of optimization techniques for DMLS as a whole. A historical sketch of nickel alloys and the development of IN718 is given. A literature review detailing the microstructure of IN718 is presented. Creep data analysis and identification of active creep mechanisms are evaluated. High-resolution microstructural characterization of DMLS and wrought IN718 are discussed in detail throughout various chapters of this thesis. Finally, an initial effort in developing a processing model that would allow for parameter optimization is presented.
ContributorsRogers, Blake Kenton (Author) / Tasooji, Amaneh (Thesis advisor) / Petuskey, William (Committee member) / Rogers, Bradley (Committee member) / Arizona State University (Publisher)
Created2017