Matching Items (3)
Filtering by

Clear all filters

151106-Thumbnail Image.png
Description
In response to the recent publication and media coverage of several books that support educating boys and girls separately, more public schools in the United States are beginning to offer same-sex schooling options. Indeed, students may be more comfortable interacting solely with same-sex peers, as boys and girls often have

In response to the recent publication and media coverage of several books that support educating boys and girls separately, more public schools in the United States are beginning to offer same-sex schooling options. Indeed, students may be more comfortable interacting solely with same-sex peers, as boys and girls often have difficulty in their interactions with each other; however, given that boys and girls often interact beyond the classroom, researchers must discover why boys and girls suffer difficult other-sex interactions and determine what can be done to improve them. We present two studies aimed at examining such processes. Both studies were conducted from a dynamical systems perspective that highlights the role of variability in dyadic social interactions to capture temporal changes in interpersonal coordination. The first focused on the utility of applying dynamics to the study of same- and mixed-sex interactions and examined the relation of the quality of those interactions to participants' perceptions of their interaction partners. The second study was an extension of the first, examining how dynamical dyadic coordination affected students' self-perceived abilities and beliefs in science, with the intention of examining social predictors of girls' and women's under-representation in science, technology, engineering, and mathematics.
ContributorsDiDonato, Matthew D (Author) / Martin, Carol L (Thesis advisor) / Amazeen, Polemnia G (Committee member) / Hanish, Laura D. (Committee member) / Updegraff, Kimberly A (Committee member) / Arizona State University (Publisher)
Created2012
155568-Thumbnail Image.png
Description
This increasing role of highly automated and intelligent systems as team members has started a paradigm shift from human-human teaming to Human-Autonomy Teaming (HAT). However, moving from human-human teaming to HAT is challenging. Teamwork requires skills that are often missing in robots and synthetic agents. It is possible that

This increasing role of highly automated and intelligent systems as team members has started a paradigm shift from human-human teaming to Human-Autonomy Teaming (HAT). However, moving from human-human teaming to HAT is challenging. Teamwork requires skills that are often missing in robots and synthetic agents. It is possible that adding a synthetic agent as a team member may lead teams to demonstrate different coordination patterns resulting in differences in team cognition and ultimately team effectiveness. The theory of Interactive Team Cognition (ITC) emphasizes the importance of team interaction behaviors over the collection of individual knowledge. In this dissertation, Nonlinear Dynamical Methods (NDMs) were applied to capture characteristics of overall team coordination and communication behaviors. The findings supported the hypothesis that coordination stability is related to team performance in a nonlinear manner with optimal performance associated with moderate stability coupled with flexibility. Thus, we need to build mechanisms in HATs to demonstrate moderately stable and flexible coordination behavior to achieve team-level goals under routine and novel task conditions.
ContributorsDemir, Mustafa, Ph.D (Author) / Cooke, Nancy J. (Thesis advisor) / Bekki, Jennifer (Committee member) / Amazeen, Polemnia G (Committee member) / Gray, Robert (Committee member) / Arizona State University (Publisher)
Created2017
190910-Thumbnail Image.png
Description
A key contribution of human factors engineering is the concept of workload: a construct that represents the relationship between an operator’s cognitive resources, the demands of their task, and performance. Understanding workload can lead to improvements in safety and performance for people working in critical environments, particularly within action teams.

A key contribution of human factors engineering is the concept of workload: a construct that represents the relationship between an operator’s cognitive resources, the demands of their task, and performance. Understanding workload can lead to improvements in safety and performance for people working in critical environments, particularly within action teams. Recently, there has been interest in considering how the workload of a team as a whole may differ from that of an individual, prompting investigation into team workload as a distinct team-level construct. In empirical research, team-level workload is often considered as the sum or average of individual team members' workloads. However, the intrinsic characteristics of action teams—such as interdependence and heterogeneity—challenge this assumption, and traditional methods of measuring team workload might be unsuitable. This dissertation delves into this issue with a review of empirical work in action teams, pinpointing several gaps. Next, the development of a testbed is described and used to address two pressing gaps regarding the impact of interdependence and how team communications relate to team workload states and performance. An experiment was conducted with forty 3-person teams collaborating in an action team task. Results of this experiment suggest that the traditional way of measuring workload in action teams via subjective questionnaires averaged at the team level has some major shortcomings, particularly when demands are elevated, and action teams are highly interdependent. The results also suggested that several communication measures are associated with increases in demands, laying the groundwork for team-level communication-based measures of team workload. The results are synthesized with findings from the literature to provide a way forward for conceptualizing and measuring team workload in action teams.
ContributorsJohnson, Craig Jonathon (Author) / Cooke, Nancy J (Thesis advisor) / Gutzwiller, Robert S (Committee member) / Holder, Eric (Committee member) / Amazeen, Polemnia G (Committee member) / Arizona State University (Publisher)
Created2023