Matching Items (15)
Filtering by

Clear all filters

152367-Thumbnail Image.png
Description
Advancements in mobile technologies have significantly enhanced the capabilities of mobile devices to serve as powerful platforms for sensing, processing, and visualization. Surges in the sensing technology and the abundance of data have enabled the use of these portable devices for real-time data analysis and decision-making in digital signal processing

Advancements in mobile technologies have significantly enhanced the capabilities of mobile devices to serve as powerful platforms for sensing, processing, and visualization. Surges in the sensing technology and the abundance of data have enabled the use of these portable devices for real-time data analysis and decision-making in digital signal processing (DSP) applications. Most of the current efforts in DSP education focus on building tools to facilitate understanding of the mathematical principles. However, there is a disconnect between real-world data processing problems and the material presented in a DSP course. Sophisticated mobile interfaces and apps can potentially play a crucial role in providing a hands-on-experience with modern DSP applications to students. In this work, a new paradigm of DSP learning is explored by building an interactive easy-to-use health monitoring application for use in DSP courses. This is motivated by the increasing commercial interest in employing mobile phones for real-time health monitoring tasks. The idea is to exploit the computational abilities of the Android platform to build m-Health modules with sensor interfaces. In particular, appropriate sensing modalities have been identified, and a suite of software functionalities have been developed. Within the existing framework of the AJDSP app, a graphical programming environment, interfaces to on-board and external sensor hardware have also been developed to acquire and process physiological data. The set of sensor signals that can be monitored include electrocardiogram (ECG), photoplethysmogram (PPG), accelerometer signal, and galvanic skin response (GSR). The proposed m-Health modules can be used to estimate parameters such as heart rate, oxygen saturation, step count, and heart rate variability. A set of laboratory exercises have been designed to demonstrate the use of these modules in DSP courses. The app was evaluated through several workshops involving graduate and undergraduate students in signal processing majors at Arizona State University. The usefulness of the software modules in enhancing student understanding of signals, sensors and DSP systems were analyzed. Student opinions about the app and the proposed m-health modules evidenced the merits of integrating tools for mobile sensing and processing in a DSP curriculum, and familiarizing students with challenges in modern data-driven applications.
ContributorsRajan, Deepta (Author) / Spanias, Andreas (Thesis advisor) / Frakes, David (Committee member) / Turaga, Pavan (Committee member) / Arizona State University (Publisher)
Created2013
152122-Thumbnail Image.png
Description
Video denoising has been an important task in many multimedia and computer vision applications. Recent developments in the matrix completion theory and emergence of new numerical methods which can efficiently solve the matrix completion problem have paved the way for exploration of new techniques for some classical image processing tasks.

Video denoising has been an important task in many multimedia and computer vision applications. Recent developments in the matrix completion theory and emergence of new numerical methods which can efficiently solve the matrix completion problem have paved the way for exploration of new techniques for some classical image processing tasks. Recent literature shows that many computer vision and image processing problems can be solved by using the matrix completion theory. This thesis explores the application of matrix completion in video denoising. A state-of-the-art video denoising algorithm in which the denoising task is modeled as a matrix completion problem is chosen for detailed study. The contribution of this thesis lies in both providing extensive analysis to bridge the gap in existing literature on matrix completion frame work for video denoising and also in proposing some novel techniques to improve the performance of the chosen denoising algorithm. The chosen algorithm is implemented for thorough analysis. Experiments and discussions are presented to enable better understanding of the problem. Instability shown by the algorithm at some parameter values in a particular case of low levels of pure Gaussian noise is identified. Artifacts introduced in such cases are analyzed. A novel way of grouping structurally-relevant patches is proposed to improve the algorithm. Experiments show that this technique is useful, especially in videos containing high amounts of motion. Based on the observation that matrix completion is not suitable for denoising patches containing relatively low amount of image details, a framework is designed to separate patches corresponding to low structured regions from a noisy image. Experiments are conducted by not subjecting such patches to matrix completion, instead denoising such patches in a different way. The resulting improvement in performance suggests that denoising low structured patches does not require a complex method like matrix completion and in fact it is counter-productive to subject such patches to matrix completion. These results also indicate the inherent limitation of matrix completion to deal with cases in which noise dominates the structural properties of an image. A novel method for introducing priorities to the ranked patches in matrix completion is also presented. Results showed that this method yields improved performance in general. It is observed that the artifacts in presence of low levels of pure Gaussian noise appear differently after introducing priorities to the patches and the artifacts occur at a wider range of parameter values. Results and discussion suggesting future ways to explore this problem are also presented.
ContributorsMaguluri, Hima Bindu (Author) / Li, Baoxin (Thesis advisor) / Turaga, Pavan (Committee member) / Claveau, Claude (Committee member) / Arizona State University (Publisher)
Created2013
150773-Thumbnail Image.png
Description
Photovoltaics (PV) is an important and rapidly growing area of research. With the advent of power system monitoring and communication technology collectively known as the "smart grid," an opportunity exists to apply signal processing techniques to monitoring and control of PV arrays. In this paper a monitoring system which provides

Photovoltaics (PV) is an important and rapidly growing area of research. With the advent of power system monitoring and communication technology collectively known as the "smart grid," an opportunity exists to apply signal processing techniques to monitoring and control of PV arrays. In this paper a monitoring system which provides real-time measurements of each PV module's voltage and current is considered. A fault detection algorithm formulated as a clustering problem and addressed using the robust minimum covariance determinant (MCD) estimator is described; its performance on simulated instances of arc and ground faults is evaluated. The algorithm is found to perform well on many types of faults commonly occurring in PV arrays. Among several types of detection algorithms considered, only the MCD shows high performance on both types of faults.
ContributorsBraun, Henry (Author) / Tepedelenlioğlu, Cihan (Thesis advisor) / Spanias, Andreas (Thesis advisor) / Turaga, Pavan (Committee member) / Arizona State University (Publisher)
Created2012
189297-Thumbnail Image.png
Description
This thesis encompasses a comprehensive research effort dedicated to overcoming the critical bottlenecks that hinder the current generation of neural networks, thereby significantly advancing their reliability and performance. Deep neural networks, with their millions of parameters, suffer from over-parameterization and lack of constraints, leading to limited generalization capabilities. In other

This thesis encompasses a comprehensive research effort dedicated to overcoming the critical bottlenecks that hinder the current generation of neural networks, thereby significantly advancing their reliability and performance. Deep neural networks, with their millions of parameters, suffer from over-parameterization and lack of constraints, leading to limited generalization capabilities. In other words, the complex architecture and millions of parameters present challenges in finding the right balance between capturing useful patterns and avoiding noise in the data. To address these issues, this thesis explores novel solutions based on knowledge distillation, enabling the learning of robust representations. Leveraging the capabilities of large-scale networks, effective learning strategies are developed. Moreover, the limitations of dependency on external networks in the distillation process, which often require large-scale models, are effectively overcome by proposing a self-distillation strategy. The proposed approach empowers the model to generate high-level knowledge within a single network, pushing the boundaries of knowledge distillation. The effectiveness of the proposed method is not only demonstrated across diverse applications, including image classification, object detection, and semantic segmentation but also explored in practical considerations such as handling data scarcity and assessing the transferability of the model to other learning tasks. Another major obstacle hindering the development of reliable and robust models lies in their black-box nature, impeding clear insights into the contributions toward the final predictions and yielding uninterpretable feature representations. To address this challenge, this thesis introduces techniques that incorporate simple yet powerful deep constraints rooted in Riemannian geometry. These constraints confer geometric qualities upon the latent representation, thereby fostering a more interpretable and insightful representation. In addition to its primary focus on general tasks like image classification and activity recognition, this strategy offers significant benefits in real-world applications where data scarcity is prevalent. Moreover, its robustness in feature removal showcases its potential for edge applications. By successfully tackling these challenges, this research contributes to advancing the field of machine learning and provides a foundation for building more reliable and robust systems across various application domains.
ContributorsChoi, Hongjun (Author) / Turaga, Pavan (Thesis advisor) / Jayasuriya, Suren (Committee member) / Li, Wenwen (Committee member) / Fazli, Pooyan (Committee member) / Arizona State University (Publisher)
Created2023
171844-Thumbnail Image.png
Description
Severe forms of mental illness, such as schizophrenia and bipolar disorder, are debilitating conditions that negatively impact an individual's quality of life. Additionally, they are often difficult and expensive to diagnose and manage, placing a large burden on society. Mental illness is typically diagnosed by the use of clinical interviews

Severe forms of mental illness, such as schizophrenia and bipolar disorder, are debilitating conditions that negatively impact an individual's quality of life. Additionally, they are often difficult and expensive to diagnose and manage, placing a large burden on society. Mental illness is typically diagnosed by the use of clinical interviews and a set of neuropsychiatric batteries; a key component of nearly all of these evaluations is some spoken language task. Clinicians have long used speech and language production as a proxy for neurological health, but most of these assessments are subjective in nature. Meanwhile, technological advancements in speech and natural language processing have grown exponentially over the past decade, increasing the capacity of computer models to assess particular aspects of speech and language. For this reason, many have seen an opportunity to leverage signal processing and machine learning applications to objectively assess clinical speech samples in order to automatically compute objective measures of neurological health. This document summarizes several contributions to expand upon this body of research. Mainly, there is still a large gap between the theoretical power of computational language models and their actual use in clinical applications. One of the largest concerns is the limited and inconsistent reliability of speech and language features used in models for assessing specific aspects of mental health; numerous methods may exist to measure the same or similar constructs and lead researchers to different conclusions in different studies. To address this, a novel measurement model based on a theoretical framework of speech production is used to motivate feature selection, while also performing a smoothing operation on features across several domains of interest. Then, these composite features are used to perform a much wider range of analyses than is typical of previous studies, looking at everything from diagnosis to functional competency assessments. Lastly, potential improvements to address practical implementation challenges associated with the use of speech and language technology in a real-world environment are investigated. The goal of this work is to demonstrate the ability of speech and language technology to aid clinical practitioners toward improvements in quality of life outcomes for their patients.
ContributorsVoleti, Rohit Nihar Uttam (Author) / Berisha, Visar (Thesis advisor) / Liss, Julie M (Thesis advisor) / Turaga, Pavan (Committee member) / Spanias, Andreas (Committee member) / Arizona State University (Publisher)
Created2022
157531-Thumbnail Image.png
Description
Despite the fact that machine learning supports the development of computer vision applications by shortening the development cycle, finding a general learning algorithm that solves a wide range of applications is still bounded by the ”no free lunch theorem”. The search for the right algorithm to solve a specific problem

Despite the fact that machine learning supports the development of computer vision applications by shortening the development cycle, finding a general learning algorithm that solves a wide range of applications is still bounded by the ”no free lunch theorem”. The search for the right algorithm to solve a specific problem is driven by the problem itself, the data availability and many other requirements.

Automated visual inspection (AVI) systems represent a major part of these challenging computer vision applications. They are gaining growing interest in the manufacturing industry to detect defective products and keep these from reaching customers. The process of defect detection and classification in semiconductor units is challenging due to different acceptable variations that the manufacturing process introduces. Other variations are also typically introduced when using optical inspection systems due to changes in lighting conditions and misalignment of the imaged units, which makes the defect detection process more challenging.

In this thesis, a BagStack classification framework is proposed, which makes use of stacking and bagging concepts to handle both variance and bias errors. The classifier is designed to handle the data imbalance and overfitting problems by adaptively transforming the

multi-class classification problem into multiple binary classification problems, applying a bagging approach to train a set of base learners for each specific problem, adaptively specifying the number of base learners assigned to each problem, adaptively specifying the number of samples to use from each class, applying a novel data-imbalance aware cross-validation technique to generate the meta-data while taking into account the data imbalance problem at the meta-data level and, finally, using a multi-response random forest regression classifier as a meta-classifier. The BagStack classifier makes use of multiple features to solve the defect classification problem. In order to detect defects, a locally adaptive statistical background modeling is proposed. The proposed BagStack classifier outperforms state-of-the-art image classification techniques on our dataset in terms of overall classification accuracy and average per-class classification accuracy. The proposed detection method achieves high performance on the considered dataset in terms of recall and precision.
ContributorsHaddad, Bashar Muneer (Author) / Karam, Lina (Thesis advisor) / Li, Baoxin (Committee member) / He, Jingrui (Committee member) / Turaga, Pavan (Committee member) / Arizona State University (Publisher)
Created2019
154721-Thumbnail Image.png
Description
Several music players have evolved in multi-dimensional and surround sound systems. The audio players are implemented as software applications for different audio hardware systems. Digital formats and wireless networks allow for audio content to be readily accessible on smart networked devices. Therefore, different audio output platforms ranging from multispeaker high-end

Several music players have evolved in multi-dimensional and surround sound systems. The audio players are implemented as software applications for different audio hardware systems. Digital formats and wireless networks allow for audio content to be readily accessible on smart networked devices. Therefore, different audio output platforms ranging from multispeaker high-end surround systems to single unit Bluetooth speakers have been developed. A large body of research has been carried out in audio processing, beamforming, sound fields etc. and new formats are developed to create realistic audio experiences.

An emerging trend is seen towards high definition AV systems, virtual reality gears as well as gaming applications with multidimensional audio. Next generation media technology is concentrating around Virtual reality experience and devices. It has applications not only in gaming but all other fields including medical, entertainment, engineering, and education. All such systems also require realistic audio corresponding with the visuals.

In the project presented in this thesis, a new portable audio hardware system is designed and developed along with a dedicated mobile android application to render immersive surround sound experiences with real-time audio effects. The tablet and mobile phone allow the user to control or “play” with sound directionality and implement various audio effects including sound rotation, spatialization, and other immersive experiences. The thesis describes the hardware and software design, provides the theory of the sound effects, and presents demonstrations of the sound application that was created.
ContributorsDharmadhikari, Chinmay (Author) / Spanias, Andreas (Thesis advisor) / Turaga, Pavan (Committee member) / Ingalls, Todd (Committee member) / Arizona State University (Publisher)
Created2016
153947-Thumbnail Image.png
Description
Image segmentation is of great importance and value in many applications. In computer vision, image segmentation is the tool and process of locating objects and boundaries within images. The segmentation result may provide more meaningful image data. Generally, there are two fundamental image segmentation algorithms: discontinuity and similarity. The idea

Image segmentation is of great importance and value in many applications. In computer vision, image segmentation is the tool and process of locating objects and boundaries within images. The segmentation result may provide more meaningful image data. Generally, there are two fundamental image segmentation algorithms: discontinuity and similarity. The idea behind discontinuity is locating the abrupt changes in intensity of images, as are often seen in edges or boundaries. Similarity subdivides an image into regions that fit the pre-defined criteria. The algorithm utilized in this thesis is the second category.

This study addresses the problem of particle image segmentation by measuring the similarity between a sampled region and an adjacent region, based on Bhattacharyya distance and an image feature extraction technique that uses distribution of local binary patterns and pattern contrasts. A boundary smoothing process is developed to improve the accuracy of the segmentation. The novel particle image segmentation algorithm is tested using four different cases of particle image velocimetry (PIV) images. The obtained experimental results of segmentations provide partitioning of the objects within 10 percent error rate. Ground-truth segmentation data, which are manually segmented image from each case, are used to calculate the error rate of the segmentations.
ContributorsHan, Dongmin (Author) / Frakes, David (Thesis advisor) / Adrian, Ronald (Committee member) / Turaga, Pavan (Committee member) / Arizona State University (Publisher)
Created2015
154572-Thumbnail Image.png
Description
This work examines two main areas in model-based time-varying signal processing with emphasis in speech processing applications. The first area concentrates on improving speech intelligibility and on increasing the proposed methodologies application for clinical practice in speech-language pathology. The second area concentrates on signal expansions matched to physical-based models but

This work examines two main areas in model-based time-varying signal processing with emphasis in speech processing applications. The first area concentrates on improving speech intelligibility and on increasing the proposed methodologies application for clinical practice in speech-language pathology. The second area concentrates on signal expansions matched to physical-based models but without requiring independent basis functions; the significance of this work is demonstrated with speech vowels.

A fully automated Vowel Space Area (VSA) computation method is proposed that can be applied to any type of speech. It is shown that the VSA provides an efficient and reliable measure and is correlated to speech intelligibility. A clinical tool that incorporates the automated VSA was proposed for evaluation and treatment to be used by speech language pathologists. Two exploratory studies are performed using two databases by analyzing mean formant trajectories in healthy speech for a wide range of speakers, dialects, and coarticulation contexts. It is shown that phonemes crowded in formant space can often have distinct trajectories, possibly due to accurate perception.

A theory for analyzing time-varying signals models with amplitude modulation and frequency modulation is developed. Examples are provided that demonstrate other possible signal model decompositions with independent basis functions and corresponding physical interpretations. The Hilbert transform (HT) and the use of the analytic form of a signal are motivated, and a proof is provided to show that a signal can still preserve desirable mathematical properties without the use of the HT. A visualization of the Hilbert spectrum is proposed to aid in the interpretation. A signal demodulation is proposed and used to develop a modified Empirical Mode Decomposition (EMD) algorithm.
ContributorsSandoval, Steven, 1984- (Author) / Papandreou-Suppappola, Antonia (Thesis advisor) / Liss, Julie M (Committee member) / Turaga, Pavan (Committee member) / Kovvali, Narayan (Committee member) / Arizona State University (Publisher)
Created2016
153488-Thumbnail Image.png
Description
Audio signals, such as speech and ambient sounds convey rich information pertaining to a user’s activity, mood or intent. Enabling machines to understand this contextual information is necessary to bridge the gap in human-machine interaction. This is challenging due to its subjective nature, hence, requiring sophisticated techniques. This dissertation presents

Audio signals, such as speech and ambient sounds convey rich information pertaining to a user’s activity, mood or intent. Enabling machines to understand this contextual information is necessary to bridge the gap in human-machine interaction. This is challenging due to its subjective nature, hence, requiring sophisticated techniques. This dissertation presents a set of computational methods, that generalize well across different conditions, for speech-based applications involving emotion recognition and keyword detection, and ambient sounds-based applications such as lifelogging.

The expression and perception of emotions varies across speakers and cultures, thus, determining features and classification methods that generalize well to different conditions is strongly desired. A latent topic models-based method is proposed to learn supra-segmental features from low-level acoustic descriptors. The derived features outperform state-of-the-art approaches over multiple databases. Cross-corpus studies are conducted to determine the ability of these features to generalize well across different databases. The proposed method is also applied to derive features from facial expressions; a multi-modal fusion overcomes the deficiencies of a speech only approach and further improves the recognition performance.

Besides affecting the acoustic properties of speech, emotions have a strong influence over speech articulation kinematics. A learning approach, which constrains a classifier trained over acoustic descriptors, to also model articulatory data is proposed here. This method requires articulatory information only during the training stage, thus overcoming the challenges inherent to large-scale data collection, while simultaneously exploiting the correlations between articulation kinematics and acoustic descriptors to improve the accuracy of emotion recognition systems.

Identifying context from ambient sounds in a lifelogging scenario requires feature extraction, segmentation and annotation techniques capable of efficiently handling long duration audio recordings; a complete framework for such applications is presented. The performance is evaluated on real world data and accompanied by a prototypical Android-based user interface.

The proposed methods are also assessed in terms of computation and implementation complexity. Software and field programmable gate array based implementations are considered for emotion recognition, while virtual platforms are used to model the complexities of lifelogging. The derived metrics are used to determine the feasibility of these methods for applications requiring real-time capabilities and low power consumption.
ContributorsShah, Mohit (Author) / Spanias, Andreas (Thesis advisor) / Chakrabarti, Chaitali (Thesis advisor) / Berisha, Visar (Committee member) / Turaga, Pavan (Committee member) / Arizona State University (Publisher)
Created2015