Matching Items (24)
Filtering by

Clear all filters

150392-Thumbnail Image.png
Description
In this thesis the performance of a Hybrid AC System (HACS) is modeled and optimized. The HACS utilizes solar photovoltaic (PV) panels to help reduce the demand from the utility during peak hours. The system also includes an ice Thermal Energy Storage (TES) tank to accumulate cooling energy during off-peak

In this thesis the performance of a Hybrid AC System (HACS) is modeled and optimized. The HACS utilizes solar photovoltaic (PV) panels to help reduce the demand from the utility during peak hours. The system also includes an ice Thermal Energy Storage (TES) tank to accumulate cooling energy during off-peak hours. The AC runs continuously on grid power during off-peak hours to generate cooling for the house and to store thermal energy in the TES. During peak hours, the AC runs on the power supplied from the PV, and cools the house along with the energy stored in the TES. A higher initial cost is expected due to the additional components of the HACS (PV and TES), but a lower operational cost due to higher energy efficiency, energy storage and renewable energy utilization. A house cooled by the HACS will require a smaller size AC unit (about 48% less in the rated capacity), compared to a conventional AC system. To compare the cost effectiveness of the HACS with a regular AC system, time-of-use (TOU) utility rates are considered, as well as the cost of the system components and the annual maintenance. The model shows that the HACS pays back its initial cost of $28k in about 6 years with an 8% APR, and saves about $45k in total cost when compared to a regular AC system that cools the same house for the same period of 6 years.
ContributorsJubran, Sadiq (Author) / Phelan, Patrick (Thesis advisor) / Calhoun, Ronald (Committee member) / Trimble, Steve (Committee member) / Arizona State University (Publisher)
Created2011
Description
As the demand for power increases in populated areas, so will the demand for water. Current power plant technology relies heavily on the Rankine cycle in coal, nuclear and solar thermal power systems which ultimately use condensers to cool the steam in the system. In dry climates, the amount of

As the demand for power increases in populated areas, so will the demand for water. Current power plant technology relies heavily on the Rankine cycle in coal, nuclear and solar thermal power systems which ultimately use condensers to cool the steam in the system. In dry climates, the amount of water to cool off the condenser can be extremely large. Current wet cooling technologies such as cooling towers lose water from evaporation. One alternative to prevent this would be to implement a radiative cooling system. More specifically, a system that utilizes the volumetric radiation emission from water to the night sky could be implemented. This thesis analyzes the validity of a radiative cooling system that uses direct radiant emission to cool water. A brief study on potential infrared transparent cover materials such as polyethylene (PE) and polyvinyl carbonate (PVC) was performed. Also, two different experiments to determine the cooling power from radiation were developed and run. The results showed a minimum cooling power of 33.7 W/m2 for a vacuum insulated glass system and 37.57 W/m2 for a tray system with a maximum of 98.61 Wm-2 at a point when conduction and convection heat fluxes were considered to be zero. The results also showed that PE proved to be the best cover material. The minimum numerical results compared well with other studies performed in the field using similar techniques and materials. The results show that a radiative cooling system for a power plant could be feasible given that the cover material selection is narrowed down, an ample amount of land is available and an economic analysis is performed proving it to be cost competitive with conventional systems.
ContributorsOvermann, William (Author) / Phelan, Patrick (Thesis advisor) / Trimble, Steve (Committee member) / Taylor, Robert (Committee member) / Arizona State University (Publisher)
Created2011
152200-Thumbnail Image.png
Description
Magnetic Resonance Imaging using spiral trajectories has many advantages in speed, efficiency in data-acquistion and robustness to motion and flow related artifacts. The increase in sampling speed, however, requires high performance of the gradient system. Hardware inaccuracies from system delays and eddy currents can cause spatial and temporal distortions in

Magnetic Resonance Imaging using spiral trajectories has many advantages in speed, efficiency in data-acquistion and robustness to motion and flow related artifacts. The increase in sampling speed, however, requires high performance of the gradient system. Hardware inaccuracies from system delays and eddy currents can cause spatial and temporal distortions in the encoding gradient waveforms. This causes sampling discrepancies between the actual and the ideal k-space trajectory. Reconstruction assuming an ideal trajectory can result in shading and blurring artifacts in spiral images. Current methods to estimate such hardware errors require many modifications to the pulse sequence, phantom measurements or specialized hardware. This work presents a new method to estimate time-varying system delays for spiral-based trajectories. It requires a minor modification of a conventional stack-of-spirals sequence and analyzes data collected on three orthogonal cylinders. The method is fast, robust to off-resonance effects, requires no phantom measurements or specialized hardware and estimate variable system delays for the three gradient channels over the data-sampling period. The initial results are presented for acquired phantom and in-vivo data, which show a substantial reduction in the artifacts and improvement in the image quality.
ContributorsBhavsar, Payal (Author) / Pipe, James G (Thesis advisor) / Frakes, David (Committee member) / Kodibagkar, Vikram (Committee member) / Arizona State University (Publisher)
Created2013
151270-Thumbnail Image.png
Description
The aim of this study was to investigate the microstructural sensitivity of the statistical distribution and diffusion kurtosis (DKI) models of non-monoexponential signal attenuation in the brain using diffusion-weighted MRI (DWI). We first developed a simulation of 2-D water diffusion inside simulated tissue consisting of semi-permeable cells and a variable

The aim of this study was to investigate the microstructural sensitivity of the statistical distribution and diffusion kurtosis (DKI) models of non-monoexponential signal attenuation in the brain using diffusion-weighted MRI (DWI). We first developed a simulation of 2-D water diffusion inside simulated tissue consisting of semi-permeable cells and a variable cell size. We simulated a DWI acquisition using a pulsed gradient spin echo (PGSE) pulse sequence, and fitted the models to the simulated DWI signals using b-values up to 2500 s/mm2. For comparison, we calculated the apparent diffusion coefficient (ADC) of the monoexponential model (b-value = 1000 s/mm2). In separate experiments, we varied the cell size (5-10-15 μ), cell volume fraction (0.50-0.65-0.80), and membrane permeability (0.001-0.01-0.1 mm/s) to study how the fitted parameters tracked simulated microstructural changes. The ADC was sensitive to all the simulated microstructural changes except the decrease in membrane permeability. The σstat of the statistical distribution model increased exclusively with a decrease in cell volume fraction. The Kapp of the DKI model increased exclusively with decreased cell size and decreased with increasing membrane permeability. These results suggest that the non-monoexponential models have different, specific microstructural sensitivity, and a combination of the models may give insights into the microstructural underpinning of tissue pathology. Faster PROPELLER DWI acquisitions, such as Turboprop and X-prop, remain subject to phase errors inherent to a gradient echo readout, which ultimately limits the applied turbo factor and thus scan time reductions. This study introduces a new phase correction to Turboprop, called Turboprop+. This technique employs calibration blades, which generate 2-D phase error maps and are rotated in accordance with the data blades, to correct phase errors arising from off-resonance and system imperfections. The results demonstrate that with a small increase in scan time for collecting calibration blades, Turboprop+ had a superior immunity to the off-resonance related artifacts when compared to standard Turboprop and recently proposed X-prop with the high turbo factor (turbo factor = 7). Thus, low specific absorption rate (SAR) and short scan time can be achieved in Turboprop+ using a high turbo factor, while off-resonance related artifacts are minimized.
ContributorsLee, Chu-Yu (Author) / Debbins, Josef P (Thesis advisor) / Bennett, Kevin M (Thesis advisor) / Karam, Lina (Committee member) / Pipe, James G (Committee member) / Arizona State University (Publisher)
Created2012
151100-Thumbnail Image.png
Description
The ability to shift the photovoltaic (PV) power curve and make the energy accessible during peak hours can be accomplished through pairing solar PV with energy storage technologies. A prototype hybrid air conditioning system (HACS), built under supervision of project head Patrick Phelan, consists of PV modules running a DC

The ability to shift the photovoltaic (PV) power curve and make the energy accessible during peak hours can be accomplished through pairing solar PV with energy storage technologies. A prototype hybrid air conditioning system (HACS), built under supervision of project head Patrick Phelan, consists of PV modules running a DC compressor that operates a conventional HVAC system paired with a second evaporator submerged within a thermal storage tank. The thermal storage is a 0.284m3 or 75 gallon freezer filled with Cryogel balls, submerged in a weak glycol solution. It is paired with its own separate air handler, circulating the glycol solution. The refrigerant flow is controlled by solenoid valves that are electrically connected to a high and low temperature thermostat. During daylight hours, the PV modules run the DC compressor. The refrigerant flow is directed to the conventional HVAC air handler when cooling is needed. Once the desired room temperature is met, refrigerant flow is diverted to the thermal storage, storing excess PV power. During peak energy demand hours, the system uses only small amounts of grid power to pump the glycol solution through the air handler (note the compressor is off), allowing for money and energy savings. The conventional HVAC unit can be scaled down, since during times of large cooling demands the glycol air handler can be operated in parallel with the conventional HVAC unit. Four major test scenarios were drawn up in order to fully comprehend the performance characteristics of the HACS. Upon initial running of the system, ice was produced and the thermal storage was charged. A simple test run consisting of discharging the thermal storage, initially ~¼ frozen, was performed. The glycol air handler ran for 6 hours and the initial cooling power was 4.5 kW. This initial test was significant, since greater than 3.5 kW of cooling power was produced for 3 hours, thus demonstrating the concept of energy storage and recovery.
ContributorsPeyton-Levine, Tobin (Author) / Phelan, Patrick (Thesis advisor) / Trimble, Steve (Committee member) / Wang, Robert (Committee member) / Arizona State University (Publisher)
Created2012
149408-Thumbnail Image.png
Description
This study analyzes the thermoelectric phenomena of nanoparticle suspensions, which are composed of liquid and solid nanoparticles that show a relatively stable Seebeck coefficient as bulk solids near room temperature. The approach is to explore the thermoelectric character of the nanoparticle suspensions, predict the outcome of the experiment and compare

This study analyzes the thermoelectric phenomena of nanoparticle suspensions, which are composed of liquid and solid nanoparticles that show a relatively stable Seebeck coefficient as bulk solids near room temperature. The approach is to explore the thermoelectric character of the nanoparticle suspensions, predict the outcome of the experiment and compare the experimental data with anticipated results. In the experiment, the nanoparticle suspension is contained in a 15cm*2.5cm*2.5cm glass container, the temperature gradient ranges from 20 °C to 60 °C, and room temperature fluctuates from 20 °C to 23°C. The measured nanoparticles include multiwall carbon nanotubes, aluminum dioxide and bismuth telluride. A temperature gradient from 20 °C to 60 °C is imposed along the length of the container, and the resulting voltage (if any) is measured. Both heating and cooling processes are measured. With three different nanoparticle suspensions (carbon nano tubes, Al2O3 nanoparticles and Bi2Te3 nanoparticles), the correlation between temperature gradient and voltage is correspondingly 8%, 38% and 96%. A comparison of results calculated from the bulk Seebeck coefficients with our measured results indicate that the Seebeck coefficient measured for each suspension is much more than anticipated, which indicates that the thermophoresis effect could have enhanced the voltage. Further research with a closed-loop system might be able to affirm the results of this study.
ContributorsZhu, Moxuan (Author) / Phelan, Patrick (Thesis advisor) / Trimble, Steve (Committee member) / Prasher, Ravi (Committee member) / Arizona State University (Publisher)
Created2010
149421-Thumbnail Image.png
Description
Phase Change Material (PCM) plays an important role as a thermal energy storage device by utilizing its high storage density and latent heat property. One of the potential applications for PCM is in buildings by incorporating them in the envelope for energy conservation. During the summer season, the benefits are

Phase Change Material (PCM) plays an important role as a thermal energy storage device by utilizing its high storage density and latent heat property. One of the potential applications for PCM is in buildings by incorporating them in the envelope for energy conservation. During the summer season, the benefits are a decrease in overall energy consumption by the air conditioning unit and a time shift in peak load during the day. Experimental work was carried out by Arizona Public Service (APS) in collaboration with Phase Change Energy Solutions (PCES) Inc. with a new class of organic-based PCM. This "BioPCM" has non-flammable properties and can be safely used in buildings. The experimental setup showed maximum energy savings of about 30%, a maximum peak load shift of ~ 60 min, and maximum cost savings of about 30%. Simulation was performed to validate the experimental results. EnergyPlus was chosen as it has the capability to simulate phase change material in the building envelope. The building material properties were chosen from the ASHRAE Handbook - Fundamentals and the HVAC system used was a window-mounted heat pump. The weather file used in the simulation was customized for the year 2008 from the National Renewable Energy Laboratory (NREL) website. All EnergyPlus inputs were ensured to match closely with the experimental parameters. The simulation results yielded comparable trends with the experimental energy consumption values, however time shifts were not observed. Several other parametric studies like varying PCM thermal conductivity, temperature range, location, insulation R-value and combination of different PCMs were analyzed and results are presented. It was found that a PCM with a melting point from 23 to 27 °C led to maximum energy savings and greater peak load time shift duration, and is more suitable than other PCM temperature ranges for light weight building construction in Phoenix.
ContributorsMuruganantham, Karthik (Author) / Phelan, Patrick (Thesis advisor) / Reddy, Agami (Committee member) / Lee, Taewoo (Committee member) / Arizona State University (Publisher)
Created2010
132733-Thumbnail Image.png
Description
Nuclear power has recently experienced a resurgence in interest due to its ability to generate significant amounts of relatively clean energy. However, the overall size of nuclear power plants still poses a problem to future advancements. The bulkiness of components in the plant contribute to longer construction times, higher building

Nuclear power has recently experienced a resurgence in interest due to its ability to generate significant amounts of relatively clean energy. However, the overall size of nuclear power plants still poses a problem to future advancements. The bulkiness of components in the plant contribute to longer construction times, higher building and maintenance costs, and the isolation of nuclear plants from populated areas. The goal of this project was to analyze the thermal performance of nanocrystalline copper tantalum (NC Cu-Ta) inside the steam generator of a pressurized water reactor to see how much the size of these units could be reduced without affecting the amount of heat transferred through it. The analysis revealed that using this material, with its higher thermal conductivity than the traditional Inconel Alloy 600 that is typically used in steam generators, it is possible to reduce the height of a steam generator from 21 meters to about 18.6 meters, signifying a 11.6% reduction in height. This analysis also revealed a diminishing return that occurs with increasing the thermal conductivity on both reducing the required heat transfer area and increasing the overall heat transfer coefficient.
ContributorsRiese, Alexander (Author) / Phelan, Patrick (Thesis director) / Bocanegra, Luis (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
171463-Thumbnail Image.png
Description
District heating plays an important role in improving energy efficiency and providing thermal heat to buildings. Instead of using water as an energy carrier to transport sensible heat, this dissertation explores the use of liquid-phase thermochemical reactions for district heating as well as thermal storage. Chapters 2 and 3 present

District heating plays an important role in improving energy efficiency and providing thermal heat to buildings. Instead of using water as an energy carrier to transport sensible heat, this dissertation explores the use of liquid-phase thermochemical reactions for district heating as well as thermal storage. Chapters 2 and 3 present thermodynamic and design analyses for the proposed district heating system. Chapter 4 models the use of liquid-phase thermochemical reactions for on-site solar thermal storage. In brief, the proposed district heating system uses liquid-phase thermochemical reactions to transport thermal energy from a heat source to a heat sink. The separation ensures that the stored thermochemical heat can be stored indefinitely and/or transported long distances. The reactant molecules are then pumped over long distances to the heat sink, where they are combined in an exothermic reaction to provide heat. The product of the exothermic reaction is then pumped back to the heat source for re-use. The key evaluation parameter is the system efficiency. The results demonstrate that with heat recovery, the system efficiency can be up to 77% when the sink temperature equals 25 C. The results also indicate that the appropriate chemical reaction candidates should have large reaction enthalpy and small reaction entropy. Further, the design analyses of two district heating systems, Direct District Heating (DDH) system and Indirect District Heating (IDH) system using the solvated case shows that the critical distance is 106m. When the distance is shorter than 1000,000m, the factors related to the chemical reaction at the user side and factors related to the separation process are important for the DDH system. When the distance is longer than 106m, the factors related to the fluid mechanic become more important. Because the substation of the IDH system degrades the quality of the energy, when the distance is shorter than 106m, the efficiency of the substation is significant. Lastly, I create models for on-site solar thermal storage systems using liquid-phase thermochemical reactions and hot water. The analysis shows that the thermochemical reaction is more competitive for long-duration storage applications. However, the heat recovery added to the thermochemical thermal storage system cannot help improving solar radiation absorption with high inlet temperature of the solar panel.
ContributorsZhang, Yanan (Author) / Wang, Robert (Thesis advisor) / Milcarek, Ryan (Committee member) / Parrish, Kristen (Committee member) / Phelan, Patrick (Committee member) / Rykaczewski, Konrad (Committee member) / Arizona State University (Publisher)
Created2022
171941-Thumbnail Image.png
Description
The technology and science capabilities of SmallSats continue to grow with the increase of capabilities in commercial off the shelf components. However, the maturation of SmallSat hardware has also led to an increase in component power consumption, this poses an issue with using traditional passive thermal management systems (radiators, thermal

The technology and science capabilities of SmallSats continue to grow with the increase of capabilities in commercial off the shelf components. However, the maturation of SmallSat hardware has also led to an increase in component power consumption, this poses an issue with using traditional passive thermal management systems (radiators, thermal straps, etc.) to regulate high-power components. High power output becomes limited in order to maintain components within their allowable temperature ranges. The aim of this study is to explore new methods of using additive manufacturing to enable the usage of heat pipe structures on SmallSat platforms up to 3U’s in size. This analysis shows that these novel structures can increase the capabilities of SmallSat platforms by allowing for larger in-use heat loads from a nominal power density of 4.7 x 10^3 W/m3 to a higher 1.0 x 10^4 W/m3 , an order of magnitude increase. In addition, the mechanical properties of the SmallSat structure are also explored to characterize effects to the mechanical integrity of the spacecraft. The results show that the advent of heat pipe integration to the structures of SmallSats will lead to an increase in thermal management capabilities compared to the current state-of-the-art systems, while not reducing the structural integrity of the spacecraft. In turn, this will lead to larger science and technology capabilities for a field that is growing in both the education and private sectors.
ContributorsAcuna, Antonio (Author) / Das, Jnaneshwar (Thesis advisor) / Phelan, Patrick (Thesis advisor) / Mignolet, Marc (Committee member) / Arizona State University (Publisher)
Created2022