Matching Items (14)
Filtering by

Clear all filters

155692-Thumbnail Image.png
Description
This study explores the possibility of two matrices containing metallic particulates to act as smart materials by sensing of strain due to the presence of the conducting particles in the matrix. The first matrix is a regular Portland cement-based one while the second is a novel iron-based, carbonated binder developed

This study explores the possibility of two matrices containing metallic particulates to act as smart materials by sensing of strain due to the presence of the conducting particles in the matrix. The first matrix is a regular Portland cement-based one while the second is a novel iron-based, carbonated binder developed at ASU. Four different iron replacement percentages by volume (10%, 20%, 30% and 40%) in a Portland cement matrix were selected, whereas the best performing iron carbonate matrix developed was used. Electrical impedance spectroscopy was used to obtain the characteristic Nyquist plot before and after application of flexural load. Electrical circuit models were used to extract the changes in electrical properties under application of load. Strain sensing behavior was evaluated with respect to application of different stress levels and varying replacement levels of the inclusion. A similar approach was used to study the strain sensing capabilities of novel iron carbonate binder. It was observed that the strain sensing efficiency increased with increasing iron percentage and the resistivity increased with increase in load (or applied stress) for both the matrices. It is also found that the iron carbonate binder is more efficient in strain sensing as it had a higher gage factor when compared to the OPC matrix containing metallic inclusions.

Analytical equations (Maxwell) were used to extract frequency dependent electrical conductivity and permittivity of the cement paste (or the host matrix), interface, inclusion (iron) and voids to develop a generic electro-mechanical coupling model to for the strain sensing behavior. COMSOL Multiphysics 5.2a was used as finite element analysis software to develop the model. A MATLAB formulation was used to generate the microstructure with different volume fractions of inclusions. Material properties were assigned (the frequency dependent electrical parameters) and the coupled structural and electrical physics interface in COMSOL was used to model the strain sensing response. The experimental change in resistance matched well with the simulated values, indicating the applicability of the model to predict the strain sensing response of particulate composite systems.
ContributorsChowdhury, Swaptik (Author) / Neithalath, Narayanan (Thesis advisor) / Rajan, Subramaniam D. (Committee member) / Hoover, Christian G (Committee member) / Arizona State University (Publisher)
Created2017
154336-Thumbnail Image.png
Description
The need for sustainability in construction has encouraged scientists to develop novel environmentally friendly materials. The use of supplementary cementitious materials was one such initiative which aided in enhancing the fresh and hardened concrete properties. This thesis aims to explore the understanding of the early age rheological properties of such

The need for sustainability in construction has encouraged scientists to develop novel environmentally friendly materials. The use of supplementary cementitious materials was one such initiative which aided in enhancing the fresh and hardened concrete properties. This thesis aims to explore the understanding of the early age rheological properties of such cementitious systems.

The first phase of the work investigates the influence of supplementary cementitious materials (SCM) in combination with ordinary Portland cement (OPC) on the rheological properties of fresh paste with and without the effect of superplasticizers. Yield stress, plastic viscosity and storage modulus are the rheological parameters which were evaluated for all the design mixtures to fundamentally understand the synergistic effects of the SCM. A time-dependent study was conducted on these blends to explore the structure formation at various time intervals which explains the effect of hydration in conjecture to its physical stiffening. The second phase focuses on the rheological characterization of novel iron powder based binder system.

The results of this work indicate that the rheological characteristics of cementitious suspensions are complex, and strongly dependent on several key parameters including: the solid loading, inter-particle forces, shape of the particle, particle size distribution of the particles, and rheological nature of the media in which the particles are suspended. Chemical composition and reactivity of the material play an important role in the time-dependent rheological study.

A stress plateau method is utilized for the determination of rheological properties of concentrated suspensions, as it better predicts the apparent yield stress and is shown to correlate well with other viscoelastic properties of the suspensions. Plastic viscosity is obtained by calculating the slope of the stress-strain rate curve of ramp down values of shear rates. In oscillatory stress measurements the plateau obtained within the linear visco-elastic region was considered to be the value for storage modulus.

Between the different types of fly ash, class F fly ash indicated a reduction in the rheological parameters as opposed to class C fly ash that is attributable to the enhanced ettringite formation in the latter. Use of superplasticizer led to a huge influence on yield stress and storage modulus of the paste due to the steric hindrance effect.

In the study of iron based binder systems, metakaolin had comparatively higher influence than fly ash on the rheology due to its tendency to agglomerate as opposed to the ball bearing effect observed in the latter. Iron increment above 60% resulted in a decrease in all the parameters of rheology discussed in this thesis. In the OPC-iron binder, the iron behaved as reinforcements yielding higher yield stress and plastic viscosity.
ContributorsInbasekaran, Aditya (Author) / Neithalath, Narayanan (Thesis advisor) / Rajan, Subramaniam D. (Committee member) / Mobasher, Barzin (Committee member) / Arizona State University (Publisher)
Created2016
158893-Thumbnail Image.png
Description
Investigation into research literature was conducted in order to understand the impacts of traditional concrete construction and explore recent advancements in 3D printing technologies and methodologies. The research project focuses on the relationship between computer modeling, testing, and verification to reduce concrete usage in flexural elements. The project features small-scale

Investigation into research literature was conducted in order to understand the impacts of traditional concrete construction and explore recent advancements in 3D printing technologies and methodologies. The research project focuses on the relationship between computer modeling, testing, and verification to reduce concrete usage in flexural elements. The project features small-scale and large-scale printing applications modelled by finite element analysis software and printed for laboratory testing. The laboratory testing included mortar cylinder testing, digital image correlation (DIC), and four pointbending tests. Results demonstrated comparable performance between casted, printed solid, and printed optimized flexural elements. Results additionally mimicked finite element models regarding failure regions.
ContributorsBjelland, Aidan D (Author) / Neithalath, Narayanan (Thesis advisor) / Hoover, Christian (Committee member) / Rajan, Subramaniam D. (Committee member) / Arizona State University (Publisher)
Created2020
151406-Thumbnail Image.png
Description
Alkali-activated aluminosilicates, commonly known as "geopolymers", are being increasingly studied as a potential replacement for Portland cement. These binders use an alkaline activator, typically alkali silicates, alkali hydroxides or a combination of both along with a silica-and-alumina rich material, such as fly ash or slag, to form a final product

Alkali-activated aluminosilicates, commonly known as "geopolymers", are being increasingly studied as a potential replacement for Portland cement. These binders use an alkaline activator, typically alkali silicates, alkali hydroxides or a combination of both along with a silica-and-alumina rich material, such as fly ash or slag, to form a final product with properties comparable to or better than those of ordinary Portland cement. The kinetics of alkali activation is highly dependent on the chemical composition of the binder material and the activator concentration. The influence of binder composition (slag, fly ash or both), different levels of alkalinity, expressed using the ratios of Na2O-to-binders (n) and activator SiO2-to-Na2O ratios (Ms), on the early age behavior in sodium silicate solution (waterglass) activated fly ash-slag blended systems is discussed in this thesis. Optimal binder composition and the n values are selected based on the setting times. Higher activator alkalinity (n value) is required when the amount of slag in the fly ash-slag blended mixtures is reduced. Isothermal calorimetry is performed to evaluate the early age hydration process and to understand the reaction kinetics of the alkali activated systems. The differences in the calorimetric signatures between waterglass activated slag and fly ash-slag blends facilitate an understanding of the impact of the binder composition on the reaction rates. Kinetic modeling is used to quantify the differences in reaction kinetics using the Exponential as well as the Knudsen method. The influence of temperature on the reaction kinetics of activated slag and fly ash-slag blends based on the hydration parameters are discussed. Very high compressive strengths can be obtained both at early ages as well as later ages (more than 70 MPa) with waterglass activated slag mortars. Compressive strength decreases with the increase in the fly ash content. A qualitative evidence of leaching is presented through the electrical conductivity changes in the saturating solution. The impact of leaching and the strength loss is found to be generally higher for the mixtures made using a higher activator Ms and a higher n value. Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR) is used to obtain information about the reaction products.
ContributorsChithiraputhiran, Sundara Raman (Author) / Neithalath, Narayanan (Thesis advisor) / Rajan, Subramaniyam D (Committee member) / Mobasher, Barzin (Committee member) / Arizona State University (Publisher)
Created2012