Matching Items (149)
Filtering by

Clear all filters

Description

Cornhole, traditionally seen as tailgate entertainment, has rapidly risen in popularity since the launching of the American Cornhole League in 2016. However, it lacks robust quality control over large tournaments, since many of the matches are scored and refereed by the players themselves. In the past, there have been issues

Cornhole, traditionally seen as tailgate entertainment, has rapidly risen in popularity since the launching of the American Cornhole League in 2016. However, it lacks robust quality control over large tournaments, since many of the matches are scored and refereed by the players themselves. In the past, there have been issues where entire competition brackets have had to be scrapped and replayed because scores were not handled correctly. The sport is in need of a supplementary scoring solution that can provide quality control and accuracy over large matches where there aren’t enough referees present to score games. Drawing from the ACL regulations as well as personal experience and testimony from ACL Pro players, a list of requirements was generated for a potential automatic scoring system. Then, a market analysis of existing scoring solutions was done, and it found that there are no solutions on the market that can automatically score a cornhole game. Using the problem requirements and previous attempts to solve the scoring problem, a list of concepts was generated and evaluated against each other to determine which scoring system design should be developed. After determining that the chosen concept was the best way to approach the problem, the problem requirements and cornhole rules were further refined into a set of physical assumptions and constraints about the game itself. This informed the choice, structure, and implementation of the algorithms that score the bags. The prototype concept was tested on their own, and areas of improvement were found. Lastly, based on the results of the tests and what was learned from the engineering process, a roadmap was set out for the future development of the automatic scoring system into a full, market-ready product.

ContributorsGillespie, Reagan (Author) / Sugar, Thomas (Thesis director) / Li, Baoxin (Committee member) / Barrett, The Honors College (Contributor) / Engineering Programs (Contributor) / Dean, W.P. Carey School of Business (Contributor)
Created2023-05
Description

Innovative teaching methods must be studied and implemented to optimize student learning and prepare future generations for complex challenges. Dr. Keith Hjelmstad, a professor at Arizona State University, developed such an approach, “The Mechanics Project,” and has implemented it in foundational engineering mechanics courses. Although course instructors have used traditional

Innovative teaching methods must be studied and implemented to optimize student learning and prepare future generations for complex challenges. Dr. Keith Hjelmstad, a professor at Arizona State University, developed such an approach, “The Mechanics Project,” and has implemented it in foundational engineering mechanics courses. Although course instructors have used traditional “lecture and read” approaches for generations, the world is changing, requiring a modified policy. In this thesis, I research, discuss, and analyze the positive effects of The Mechanics Project for civil engineering students based on its fundamental principles.

ContributorsWoodward, Caleb (Author) / Hjelmstad, Keith (Thesis director) / Chatziefstratiou, Efthalia (Committee member) / Barrett, The Honors College (Contributor) / Civil, Environmental and Sustainable Eng Program (Contributor)
Created2023-05
Description

As a result of the increase of pollution related to industrialization in Vietnam, acid rain has become a prevalent issue for Vietnamese farmers who are forced to rinse their crops – risking damage due to overwatering and poor harvest. Thus, the team was motivated to develop a solution to harmful

As a result of the increase of pollution related to industrialization in Vietnam, acid rain has become a prevalent issue for Vietnamese farmers who are forced to rinse their crops – risking damage due to overwatering and poor harvest. Thus, the team was motivated to develop a solution to harmful impacts of acidic rainwater by creating a system with the ability to capture rainwater and determine its level of acidity in order to optimize the crop watering process, and promote productive crops. By conducting preliminary research on rainfall and tropical climate in Vietnam, existing products on the market, and pH sensors for monitoring and device material, the team was able to design a number of devices to collect, store, and measure the pH of rainwater. After developing a number of initial design requirements based on the needs of the farmers, a final prototype was developed using the best aspects of each initial design. Tests were conducted with varying structural and aqueous materials to represent a broad range of environmental conditions. While the scope of the project was ultimately limited to prototyping purposes, the principles explored throughout this thesis project can successfully be applied to a fully-functioning production model available for commercial use on Vietnamese farms. Given more time for development, improvements would be made in the extent of materials tested, and the configuration of electronics and data acquisition, in order to further optimize the process of determining rainwater acidity.

ContributorsSweis, Hannah (Author) / Ruiz Vargas, Vianney (Co-author) / Borrel, Henri (Co-author) / Masterson, William (Co-author) / Schoepf, Jared (Thesis director) / Singh Grewal, Anoop (Committee member) / Barrett, The Honors College (Contributor)
Created2023-05
186267-Thumbnail Image.png
Description
The CNC mill is a highly valuable tool for engineering design, allowing for the creation of precise and complex metal parts. However, due to their high cost, many engineers do not have access to these machines until they enter industry, limiting the knowledge and experience of engineering students. This also

The CNC mill is a highly valuable tool for engineering design, allowing for the creation of precise and complex metal parts. However, due to their high cost, many engineers do not have access to these machines until they enter industry, limiting the knowledge and experience of engineering students. This also restricts the level of engineering design they can participate in as they are limited to lower strength materials and processes. To expand the possibilities for engineering students, hobbyists, and small businesses, we created a reliable and affordable desktop CNC mill. Our machine is capable of cutting non-ferrous metals such as aluminum with 70μm repeatable part precision and be compatible with coolant and vacuum systems.
ContributorsHodson, Kenneth (Author) / Altobelli, Seth (Co-author) / Jordan, Shawn (Thesis director) / Sweeney, Rhett (Committee member) / Barrett, The Honors College (Contributor) / Engineering Programs (Contributor)
Created2023-05
166175-Thumbnail Image.png
Description

STEAMtank is a project beneath that falls under the umbrella of InnovationSpace, an initiative of the Design School at Arizona State University. STEAMtank is the product of the product of the honors thesis of Abigail Peters, who envisioned a K-8 STEAM (science, technology, engineering, art, and math) museum that was

STEAMtank is a project beneath that falls under the umbrella of InnovationSpace, an initiative of the Design School at Arizona State University. STEAMtank is the product of the product of the honors thesis of Abigail Peters, who envisioned a K-8 STEAM (science, technology, engineering, art, and math) museum that was hosted on campus at ASU and was free to the community to promote STEAM education for underrepresented communities. STEAMtank is now in its second iteration, with six teams creating six attractions for the museum. Alongside these projects, presented here is a concept design for a museum exhibit focused entirely around chemistry, a particular branch of science that is lacking from all K-8 focused STEAM exhibits in Phoenix.

ContributorsFarrington, Logan (Author) / Hedges, Craig (Thesis director) / Reeves, James (Committee member) / Barrett, The Honors College (Contributor) / School of Molecular Sciences (Contributor)
Created2022-05
166190-Thumbnail Image.png
Description
This paper documents the design, analysis, and construction of a towing tank suitable for experimental studies within a Reynolds number less than approximately 500,000, for test models of varying shape. The design and manufacturing of a towing tank provides Arizona State University with laboratory equipment for experimental fluid mechanics. The

This paper documents the design, analysis, and construction of a towing tank suitable for experimental studies within a Reynolds number less than approximately 500,000, for test models of varying shape. The design and manufacturing of a towing tank provides Arizona State University with laboratory equipment for experimental fluid mechanics. The design consists of a 3-meter-long, 0.5-meter-wide, and 0.8-meter-high cast acrylic tank with aluminum welded-frame supports. There is a pulling mechanism consisting of a belt drive and linear rail guide system that will be positioned on top of the tank. The pulling mechanism is currently in the prototype development stage. The prototype serves as a proof of concept for the final design, as data has been collected and analyzed using MATLAB, resolving the drag force of a submerged test model. This paper demonstrates the design process, prototype development, and construction of the towing tank. The original goal of this research was to answer questions about optimization of a swimmer’s technique by providing strong experimental results and deep analysis of the factors affecting performance. However, there were tasks along the way that shifted the focus from experimentation and analysis to design and manufacturing.
ContributorsAll, Isabella (Author) / Wells, Valana (Thesis director) / Pathikonda, Gokul (Committee member) / Hota , Piyush (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2022-05
Description

In this paper, we discuss the methods and requirements to simulate a soft bodied beam using traditional rigid body kinematics to produce motion inspired by eels. Eels produce a form of undulatory locomotion called anguilliform locomotion that propagates waves throughout the entire body. The system that we are analyzing is

In this paper, we discuss the methods and requirements to simulate a soft bodied beam using traditional rigid body kinematics to produce motion inspired by eels. Eels produce a form of undulatory locomotion called anguilliform locomotion that propagates waves throughout the entire body. The system that we are analyzing is a flexible 3D printed beam being actively driven by a servo motor. Using the simulation, we also analyze different parameters for these spines to maximize the linear speed of the system.

ContributorsKwan, Anson (Author) / Aukes, Daniel (Thesis director) / Marvi, Hamidreza (Committee member) / Barrett, The Honors College (Contributor) / Engineering Programs (Contributor)
Created2022-05
164802-Thumbnail Image.png
Description

This study was conducted in order to better understand the ways in which social and environmental justice curriculum would suit engineers. In particular, it focuses on how social and environmental justice are valued in engineering and the internal and external barriers engineers face in pursuing it. The research first discusses

This study was conducted in order to better understand the ways in which social and environmental justice curriculum would suit engineers. In particular, it focuses on how social and environmental justice are valued in engineering and the internal and external barriers engineers face in pursuing it. The research first discusses the role of engineering in social and environmental justice, followed by common engineering ideologies and existing interactions between engineers and justice. The results in this paper presents the findings of qualitative data analysis of transcriptions of interviews conducted with engineers regarding social and environmental justice. The responses of interviewees were organized into different categories of value and obstacles were identified, analyzed, and discussed. The interpretations presented in this paper are tentative and are a part of an ongoing study that will be released at a later date.

ContributorsTon, Kathie (Author) / Karwat, Darshan (Thesis director) / McMeekin, Mike (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2022-05
166068-Thumbnail Image.png
Description
The lack of infrastructure to provide clean drinking water and sanitation has led to the immense influx and use of plastic sachets, plastic water bottles, and the overall continued rise of plastic usage. Plastic pollution is rising at unprecedented rates. Current estimations show that there will be more plastic in

The lack of infrastructure to provide clean drinking water and sanitation has led to the immense influx and use of plastic sachets, plastic water bottles, and the overall continued rise of plastic usage. Plastic pollution is rising at unprecedented rates. Current estimations show that there will be more plastic in the ocean than fish before 2050. BYOH2O was developed in efforts to ensure clean water access for individuals while minimizing waste creation and more specifically, reducing plastic. BYOH2O (Bring Your Own H2O) is a revolutionary device that provides clean water for outdoor recreational trips such as backpacking, hiking, hunting, and cycling. The BYOH2O company was created in August 2021. BYOH2O is a device that significantly reduces the amount of plastic that is typically found in portable water devices by allowing the easy filtration of water without the need for electricity.
ContributorsWaxman, Aviel (Author) / Butler, Jacob (Co-author) / Langlais, Grayson (Co-author) / Vullo, Delaney (Co-author) / Byrne, Jared (Thesis director) / Larsen, Wiley (Committee member) / Lawson, Brennan (Committee member) / Barrett, The Honors College (Contributor) / School of Social Work (Contributor)
Created2022-05
166072-Thumbnail Image.png
Description

Following a study conducted in 1991 supporting that kinesthetic information affects visual processing information when moving an arm in extrapersonal space, this research aims to suggest utilizing virtual-reality (VR) technology will lead to more accurate and faster data acquisition (Helms Tillery, et al.) [1]. The previous methods for conducting such

Following a study conducted in 1991 supporting that kinesthetic information affects visual processing information when moving an arm in extrapersonal space, this research aims to suggest utilizing virtual-reality (VR) technology will lead to more accurate and faster data acquisition (Helms Tillery, et al.) [1]. The previous methods for conducting such research used ultrasonic systems of ultrasound emitters and microphones to track distance from the speed of sound. This method made the experimentation process long and spatial data difficult to synthesize. The purpose of this paper is to show the progress I have made in the efforts to capture spatial data using VR technology to enhance the previous research that has been done in the field of neuroscience. The experimental setup was completed using the Oculus Quest 2 VR headset and included hand controllers. The experiment simulation was created using Unity game engine to build a 3D VR world which can be used interactively with the Oculus. The result of this simulation allows the user to interact with a ball in the VR environment without seeing the body of the user. The VR simulation is able to be used in combination with real-time motion capture cameras to capture live spatial data of the user during trials, though spatial data from the VR environment has not been able to be collected.

ContributorsSyed, Anisa (Author) / Helms-Tillery, Stephen (Thesis director) / Tanner, Justin (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2022-05