Matching Items (36)
Filtering by

Clear all filters

149867-Thumbnail Image.png
Description
Following the success in incorporating perceptual models in audio coding algorithms, their application in other speech/audio processing systems is expanding. In general, all perceptual speech/audio processing algorithms involve minimization of an objective function that directly/indirectly incorporates properties of human perception. This dissertation primarily investigates the problems associated with directly embedding

Following the success in incorporating perceptual models in audio coding algorithms, their application in other speech/audio processing systems is expanding. In general, all perceptual speech/audio processing algorithms involve minimization of an objective function that directly/indirectly incorporates properties of human perception. This dissertation primarily investigates the problems associated with directly embedding an auditory model in the objective function formulation and proposes possible solutions to overcome high complexity issues for use in real-time speech/audio algorithms. Specific problems addressed in this dissertation include: 1) the development of approximate but computationally efficient auditory model implementations that are consistent with the principles of psychoacoustics, 2) the development of a mapping scheme that allows synthesizing a time/frequency domain representation from its equivalent auditory model output. The first problem is aimed at addressing the high computational complexity involved in solving perceptual objective functions that require repeated application of auditory model for evaluation of different candidate solutions. In this dissertation, a frequency pruning and a detector pruning algorithm is developed that efficiently implements the various auditory model stages. The performance of the pruned model is compared to that of the original auditory model for different types of test signals in the SQAM database. Experimental results indicate only a 4-7% relative error in loudness while attaining up to 80-90 % reduction in computational complexity. Similarly, a hybrid algorithm is developed specifically for use with sinusoidal signals and employs the proposed auditory pattern combining technique together with a look-up table to store representative auditory patterns. The second problem obtains an estimate of the auditory representation that minimizes a perceptual objective function and transforms the auditory pattern back to its equivalent time/frequency representation. This avoids the repeated application of auditory model stages to test different candidate time/frequency vectors in minimizing perceptual objective functions. In this dissertation, a constrained mapping scheme is developed by linearizing certain auditory model stages that ensures obtaining a time/frequency mapping corresponding to the estimated auditory representation. This paradigm was successfully incorporated in a perceptual speech enhancement algorithm and a sinusoidal component selection task.
ContributorsKrishnamoorthi, Harish (Author) / Spanias, Andreas (Thesis advisor) / Papandreou-Suppappola, Antonia (Committee member) / Tepedelenlioğlu, Cihan (Committee member) / Tsakalis, Konstantinos (Committee member) / Arizona State University (Publisher)
Created2011
150187-Thumbnail Image.png
Description
Genomic and proteomic sequences, which are in the form of deoxyribonucleic acid (DNA) and amino acids respectively, play a vital role in the structure, function and diversity of every living cell. As a result, various genomic and proteomic sequence processing methods have been proposed from diverse disciplines, including biology, chemistry,

Genomic and proteomic sequences, which are in the form of deoxyribonucleic acid (DNA) and amino acids respectively, play a vital role in the structure, function and diversity of every living cell. As a result, various genomic and proteomic sequence processing methods have been proposed from diverse disciplines, including biology, chemistry, physics, computer science and electrical engineering. In particular, signal processing techniques were applied to the problems of sequence querying and alignment, that compare and classify regions of similarity in the sequences based on their composition. However, although current approaches obtain results that can be attributed to key biological properties, they require pre-processing and lack robustness to sequence repetitions. In addition, these approaches do not provide much support for efficiently querying sub-sequences, a process that is essential for tracking localized database matches. In this work, a query-based alignment method for biological sequences that maps sequences to time-domain waveforms before processing the waveforms for alignment in the time-frequency plane is first proposed. The mapping uses waveforms, such as time-domain Gaussian functions, with unique sequence representations in the time-frequency plane. The proposed alignment method employs a robust querying algorithm that utilizes a time-frequency signal expansion whose basis function is matched to the basic waveform in the mapped sequences. The resulting WAVEQuery approach is demonstrated for both DNA and protein sequences using the matching pursuit decomposition as the signal basis expansion. The alignment localization of WAVEQuery is specifically evaluated over repetitive database segments, and operable in real-time without pre-processing. It is demonstrated that WAVEQuery significantly outperforms the biological sequence alignment method BLAST for queries with repetitive segments for DNA sequences. A generalized version of the WAVEQuery approach with the metaplectic transform is also described for protein sequence structure prediction. For protein alignment, it is often necessary to not only compare the one-dimensional (1-D) primary sequence structure but also the secondary and tertiary three-dimensional (3-D) space structures. This is done after considering the conformations in the 3-D space due to the degrees of freedom of these structures. As a result, a novel directionality based 3-D waveform mapping for the 3-D protein structures is also proposed and it is used to compare protein structures using a matched filter approach. By incorporating a 3-D time axis, a highly-localized Gaussian-windowed chirp waveform is defined, and the amino acid information is mapped to the chirp parameters that are then directly used to obtain directionality in the 3-D space. This mapping is unique in that additional characteristic protein information such as hydrophobicity, that relates the sequence with the structure, can be added as another representation parameter. The additional parameter helps tracking similarities over local segments of the structure, this enabling classification of distantly related proteins which have partial structural similarities. This approach is successfully tested for pairwise alignments over full length structures, alignments over multiple structures to form a phylogenetic trees, and also alignments over local segments. Also, basic classification over protein structural classes using directional descriptors for the protein structure is performed.
ContributorsRavichandran, Lakshminarayan (Author) / Papandreou-Suppappola, Antonia (Thesis advisor) / Spanias, Andreas S (Thesis advisor) / Chakrabarti, Chaitali (Committee member) / Tepedelenlioğlu, Cihan (Committee member) / Lacroix, Zoé (Committee member) / Arizona State University (Publisher)
Created2011
150098-Thumbnail Image.png
Description
Polymer and polymer matrix composites (PMCs) materials are being used extensively in different civil and mechanical engineering applications. The behavior of the epoxy resin polymers under different types of loading conditions has to be understood before the mechanical behavior of Polymer Matrix Composites (PMCs) can be accurately predicted. In many

Polymer and polymer matrix composites (PMCs) materials are being used extensively in different civil and mechanical engineering applications. The behavior of the epoxy resin polymers under different types of loading conditions has to be understood before the mechanical behavior of Polymer Matrix Composites (PMCs) can be accurately predicted. In many structural applications, PMC structures are subjected to large flexural loadings, examples include repair of structures against earthquake and engine fan cases. Therefore it is important to characterize and model the flexural mechanical behavior of epoxy resin materials. In this thesis, a comprehensive research effort was undertaken combining experiments and theoretical modeling to investigate the mechanical behavior of epoxy resins subject to different loading conditions. Epoxy resin E 863 was tested at different strain rates. Samples with dog-bone geometry were used in the tension tests. Small sized cubic, prismatic, and cylindrical samples were used in compression tests. Flexural tests were conducted on samples with different sizes and loading conditions. Strains were measured using the digital image correlation (DIC) technique, extensometers, strain gauges, and actuators. Effects of triaxiality state of stress were studied. Cubic, prismatic, and cylindrical compression samples undergo stress drop at yield, but it was found that only cubic samples experience strain hardening before failure. Characteristic points of tensile and compressive stress strain relation and load deflection curve in flexure were measured and their variations with strain rate studied. Two different stress strain models were used to investigate the effect of out-of-plane loading on the uniaxial stress strain response of the epoxy resin material. The first model is a strain softening with plastic flow for tension and compression. The influence of softening localization on material behavior was investigated using the DIC system. It was found that compression plastic flow has negligible influence on flexural behavior in epoxy resins, which are stronger in pre-peak and post-peak softening in compression than in tension. The second model was a piecewise-linear stress strain curve simplified in the post-peak response. Beams and plates with different boundary conditions were tested and analytically studied. The flexural over-strength factor for epoxy resin polymeric materials were also evaluated.
ContributorsYekani Fard, Masoud (Author) / Chattopadhyay, Aditi (Thesis advisor) / Dai, Lenore (Committee member) / Li, Jian (Committee member) / Papandreou-Suppappola, Antonia (Committee member) / Rajadas, John (Committee member) / Arizona State University (Publisher)
Created2011
151480-Thumbnail Image.png
Description
The use of electromyography (EMG) signals to characterize muscle fatigue has been widely accepted. Initial work on characterizing muscle fatigue during isometric contractions demonstrated that its frequency decreases while its amplitude increases with the onset of fatigue. More recent work concentrated on developing techniques to characterize dynamic contractions for use

The use of electromyography (EMG) signals to characterize muscle fatigue has been widely accepted. Initial work on characterizing muscle fatigue during isometric contractions demonstrated that its frequency decreases while its amplitude increases with the onset of fatigue. More recent work concentrated on developing techniques to characterize dynamic contractions for use in clinical and training applications. Studies demonstrated that as fatigue progresses, the EMG signal undergoes a shift in frequency, and different physiological mechanisms on the possible cause of the shift were considered. Time-frequency processing, using the Wigner distribution or spectrogram, is one of the techniques used to estimate the instantaneous mean frequency and instantaneous median frequency of the EMG signal using a variety of techniques. However, these time-frequency methods suffer either from cross-term interference when processing signals with multiple components or time-frequency resolution due to the use of windowing. This study proposes the use of the matching pursuit decomposition (MPD) with a Gaussian dictionary to process EMG signals produced during both isometric and dynamic contractions. In particular, the MPD obtains unique time-frequency features that represent the EMG signal time-frequency dependence without suffering from cross-terms or loss in time-frequency resolution. As the MPD does not depend on an analysis window like the spectrogram, it is more robust in applying the timefrequency features to identify the spectral time-variation of the EGM signal.
ContributorsAustin, Hiroko (Author) / Papandreou-Suppappola, Antonia (Thesis advisor) / Kovvali, Narayan (Committee member) / Muthuswamy, Jitendran (Committee member) / Arizona State University (Publisher)
Created2012
137494-Thumbnail Image.png
Description
This project examines the science of electric field sensing and completes experiments, gathering data to support its utility for various applications. The basic system consists of a transmitter, receiver, and lock-in amplifier. The primary goal of the study was to determine if such a system could detect a human disturbance,

This project examines the science of electric field sensing and completes experiments, gathering data to support its utility for various applications. The basic system consists of a transmitter, receiver, and lock-in amplifier. The primary goal of the study was to determine if such a system could detect a human disturbance, due to the capacitance of a human body, and such a thesis was supported. Much different results were obtained when a person disturbed the electric field transmitted by the system than when other types of objects, such as chairs and electronic devices, were placed in the field. In fact, there was a distinct difference between persons of varied sizes as well. This thesis goes through the basic design of the system and the process of experimental design for determining the capabilities of such an electric field sensing system.
ContributorsBranham, Breana Michelle (Author) / Allee, David (Thesis director) / Papandreou-Suppappola, Antonia (Committee member) / Phillips, Stephen (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor) / School of International Letters and Cultures (Contributor)
Created2013-05
131479-Thumbnail Image.png
Description
This thesis presents a kit of materials intended to present students with a glimpse of what engineering entails by guiding them through building engineering projects similar to what is in the real world. The objective of this project is to pique the interest of children by introducing them to lesser

This thesis presents a kit of materials intended to present students with a glimpse of what engineering entails by guiding them through building engineering projects similar to what is in the real world. The objective of this project is to pique the interest of children by introducing them to lesser known engineering related topics, and increasing their literacy of terms and methods engineers use to solve problems. The effectiveness of the kit’s content and teaching methods was tested in a classroom of 6th graders and was measured using the responses from surveys handed out. I found that kit did in fact positively lead to a change in the way the students perceived engineering, and it taught students about new engineering related topics. Students were capable of completing difficult tasks of wiring and coding successfully through the use of detailed instruction. However, the instructions were seen in two opposing views of either being too overwhelming or more guidance was necessary.
ContributorsQuezada, Hebellyn Arleth (Author) / Aukes, Daniel (Thesis director) / Kellam, Nadia (Committee member) / Engineering Programs (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131373-Thumbnail Image.png
Description
The relationship between video games and education is something that has been studied extensively in academia. Based upon these studies a new concept was created, gamification. Gamification is the next step in video game research to analyze why video games enhance learning. The interest and research into this concept have

The relationship between video games and education is something that has been studied extensively in academia. Based upon these studies a new concept was created, gamification. Gamification is the next step in video game research to analyze why video games enhance learning. The interest and research into this concept have developed so much so that it has become its own topic area for research. This study is looking to analyze the effect that gamification has on not only learning, but also self-efficacy. Through a choose your own adventure game, the knowledge and self-efficacy of participants will be examined to observe the differences when learning difficult engineering concepts with and without gamification. It is expected that participants that experienced training through gamification will demonstrate deeper learning and higher self-efficacy than trained through a video. Furthermore, it is anticipated that some video trained participants’ self-efficacy will increase; however, their comprehension will be less than participants trained through gamification. The results of this study can help promote the interest in researching gamification and education, while influencing educators to corporate gamification elements when designing their courses. Moreover, this study continued through adaptation and integration into a statics forces class, investigated if the same results can be found within a classroom setting.
ContributorsKanechika, Amber (Author) / Craig, Scotty (Thesis director) / Roscoe, Rod (Committee member) / Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131202-Thumbnail Image.png
Description
The purpose of this study is to spark a discussion for engineers and their firms to consider the impact of border barriers on wildlife. The focus of this study is to consider if or how engineers make those considerations, such as through design modifications. Barriers block wildlife migration patterns, disabling

The purpose of this study is to spark a discussion for engineers and their firms to consider the impact of border barriers on wildlife. The focus of this study is to consider if or how engineers make those considerations, such as through design modifications. Barriers block wildlife migration patterns, disabling them from life-sustaining resources. This is particularly important due to an increasing trend in habitat loss, urban development, and climate change. During literature analysis of border barrier impacts, and outreaching to relevant organizations and individuals, there was little to no public documentation or discussion from the engineering community found. Discussion that was found is included in this study, but the lack of connection between conservation and engineering professionals is eminently profound. Therefore, the analysis of studying engineering design considerations additionally studied the relationship between environmental and engineering professionals. Types of research included involves literature analysis of journal articles, reports, project plans for construction, and environmental laws pertinent to wildlife impact.
ContributorsMcMillin, Kaci (Author) / Karwat, Darshan (Thesis director) / Senko, Jesse (Committee member) / Engineering Programs (Contributor) / Environmental and Resource Management (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
132203-Thumbnail Image.png
Description
This creative project is a children’s book designed to teach young readers about engineering through a fictional story about a group of children creating a robot for their school’s show-and-tell. The story aims to teach engineering principles to children in a lighthearted and entertaining form, narrating notions such as the

This creative project is a children’s book designed to teach young readers about engineering through a fictional story about a group of children creating a robot for their school’s show-and-tell. The story aims to teach engineering principles to children in a lighthearted and entertaining form, narrating notions such as the design process, prototyping, specialty fields, and repurposing. Other principles such as learning patience, compromise and teamwork are also conveyed throughout the plot details. Small life lessons that transcend the realm of engineering are also embodied throughout. The plot of the story is a young girl who goes to visit her grandfather who is a garage tinkerer with a love of spare parts. He tells her about his job as a robotics engineer, and she loves it. She goes and tells her friends who decide they want to make a robot for show-and-tell at school. The grandfather agrees to help them build a robot and thus the group of kids are walked through the engineering design process, learning new things (and specialization) along the way. The story ends by revealing that the whole story was a flashback the main character was having as she is about to start her first day at an engineering firm.
ContributorsReed, Shelby Marie (Author) / Oberle, Eric (Thesis director) / Williams, Wendy (Committee member) / Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
131398-Thumbnail Image.png
Description
With the ongoing development of simulation technology, classic barriers to social interactions are beginning to be dismantled. One such exchange is encapsulated within education—instructors can use simulations to make difficult topics more manageable and accessible to students. Within simulations that include virtual humans, however, there are important factors to consider.

With the ongoing development of simulation technology, classic barriers to social interactions are beginning to be dismantled. One such exchange is encapsulated within education—instructors can use simulations to make difficult topics more manageable and accessible to students. Within simulations that include virtual humans, however, there are important factors to consider. Participants playing in virtual environments will act in a way that is consistent with their real-world behaviors—including their implicit biases. The current study seeks to determine the impact of virtual humans’ skin tone on participants’ behaviors when applying engineering concepts to simulated projects. Within a comparable study focused on a medical training simulation, significantly more errors and delays were made when working for the benefit of dark-skinned patients in a virtual context. In the current study, participants were given a choose-your-own-adventure style game in which they constructed simulated bridges for either a light- ordark-skinned community, and the number of errors and time taken for each decision was tracked. Results are expected to be consistent with previous study, indicating a higher number of errors and less time taken for each decision, although these results may be attenuated by a
lack of time pressure and urgency to the given situations. If these expected results hold, there may be implications for both undergraduate engineering curriculum and real-world engineering endeavors.
ContributorsEldemire, Kate (Author) / Craig, Scotty D. (Thesis director) / Roscoe, Rod D. (Committee member) / Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05