Matching Items (32)
Filtering by

Clear all filters

150202-Thumbnail Image.png
Description
Photovoltaic (PV) systems are one of the next generation's renewable energy sources for our world energy demand. PV modules are highly reliable. However, in polluted environments, over time, they will collect grime and dust. There are also limited field data studies about soiling losses on PV modules. The study showed

Photovoltaic (PV) systems are one of the next generation's renewable energy sources for our world energy demand. PV modules are highly reliable. However, in polluted environments, over time, they will collect grime and dust. There are also limited field data studies about soiling losses on PV modules. The study showed how important it is to investigate the effect of tilt angle on soiling. The study includes two sets of mini-modules. Each set has 9 PV modules tilted at 0, 5, 10, 15, 20, 23, 30, 33 and 40°. The first set called "Cleaned" was cleaned every other day. The second set called "Soiled" was never cleaned after the first day. The short circuit current, a measure of irradiance, and module temperature was monitored and recorded every two minutes over three months (January-March 2011). The data were analyzed to investigate the effect of tilt angle on daily and monthly soiling, and hence transmitted solar insolation and energy production by PV modules. The study shows that during the period of January through March 2011 there was an average loss due to soiling of approximately 2.02% for 0° tilt angle. Modules at tilt anlges 23° and 33° also have some insolation losses but do not come close to the module at 0° tilt angle. Tilt anlge 23° has approximately 1.05% monthly insolation loss, and 33° tilt angle has an insolation loss of approximately 0.96%. The soiling effect is present at any tilt angle, but the magnitude is evident: the flatter the solar module is placed the more energy it will lose.
ContributorsCano Valero, José (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Madakannan, Arunachalanadar (Committee member) / Macia, Narciso (Committee member) / Arizona State University (Publisher)
Created2011
151827-Thumbnail Image.png
Description
The object of this study was a 26 year old residential Photovoltaic (PV) monocrystalline silicon (c-Si) power plant, called Solar One, built by developer John F. Long in Phoenix, Arizona (a hot-dry field condition). The task for Arizona State University Photovoltaic Reliability Laboratory (ASU-PRL) graduate students was to evaluate the

The object of this study was a 26 year old residential Photovoltaic (PV) monocrystalline silicon (c-Si) power plant, called Solar One, built by developer John F. Long in Phoenix, Arizona (a hot-dry field condition). The task for Arizona State University Photovoltaic Reliability Laboratory (ASU-PRL) graduate students was to evaluate the power plant through visual inspection, electrical performance, and infrared thermography. The purpose of this evaluation was to measure and understand the extent of degradation to the system along with the identification of the failure modes in this hot-dry climatic condition. This 4000 module bipolar system was originally installed with a 200 kW DC output of PV array (17 degree fixed tilt) and an AC output of 175 kVA. The system was shown to degrade approximately at a rate of 2.3% per year with no apparent potential induced degradation (PID) effect. The power plant is made of two arrays, the north array and the south array. Due to a limited time frame to execute this large project, this work was performed by two masters students (Jonathan Belmont and Kolapo Olakonu) and the test results are presented in two masters theses. This thesis presents the results obtained on the north array and the other thesis presents the results obtained on the south array. The resulting study showed that PV module design, array configuration, vandalism, installation methods and Arizona environmental conditions have had an effect on this system's longevity and reliability. Ultimately, encapsulation browning, higher series resistance (potentially due to solder bond fatigue) and non-cell interconnect ribbon breakages outside the modules were determined to be the primary causes for the power loss.
ContributorsBelmont, Jonathan (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Henderson, Mark (Committee member) / Rogers, Bradley (Committee member) / Arizona State University (Publisher)
Created2013
151426-Thumbnail Image.png
Description
While the piezoelectric effect has been around for some time, it has only recently caught interest as a potential sustainable energy harvesting device. Piezoelectric energy harvesting has been developed for shoes and panels, but has yet to be integrated into a marketable bicycle tire. For this thesis, the development and

While the piezoelectric effect has been around for some time, it has only recently caught interest as a potential sustainable energy harvesting device. Piezoelectric energy harvesting has been developed for shoes and panels, but has yet to be integrated into a marketable bicycle tire. For this thesis, the development and feasibility of a piezoelectric tire was done. This includes the development of a circuit that incorporates piezoceramic elements, energy harvesting circuitry, and an energy storage device. A single phase circuit was designed using an ac-dc diode rectifier. An electrolytic capacitor was used as the energy storage device. A financial feasibility was also done to determine targets for manufacturing cost and sales price. These models take into account market trends for high performance tires, economies of scale, and the possibility of government subsidies. This research will help understand the potential for the marketability of a piezoelectric energy harvesting tire that can create electricity for remote use. This study found that there are many obstacles that must be addressed before a piezoelectric tire can be marketed to the general public. The power output of this device is miniscule compared to an alkaline battery. In order for this device to approach the power output of an alkaline battery the weight of the device would also become an issue. Additionally this device is very costly compared to the average bicycle tire. Lastly, this device is extreme fragile and easily broken. In order for this device to become marketable the issues of power output, cost, weight, and durability must all be successfully overcome.
ContributorsMalotte, Christopher (Author) / Madakannan, Arunachalanadar (Thesis advisor) / Srinivasan, Devarajan (Committee member) / Rogers, Bradley (Committee member) / Arizona State University (Publisher)
Created2012
151340-Thumbnail Image.png
Description
Potential induced degradation (PID) due to high system voltages is one of the major degradation mechanisms in photovoltaic (PV) modules, adversely affecting their performance due to the combined effects of the following factors: system voltage, superstrate/glass surface conductivity, encapsulant conductivity, silicon nitride anti-reflection coating property and interface property (glass/encapsulant; encapsulant/cell;

Potential induced degradation (PID) due to high system voltages is one of the major degradation mechanisms in photovoltaic (PV) modules, adversely affecting their performance due to the combined effects of the following factors: system voltage, superstrate/glass surface conductivity, encapsulant conductivity, silicon nitride anti-reflection coating property and interface property (glass/encapsulant; encapsulant/cell; encapsulant/backsheet). Previous studies carried out at ASU's Photovoltaic Reliability Laboratory (ASU-PRL) showed that only negative voltage bias (positive grounded systems) adversely affects the performance of commonly available crystalline silicon modules. In previous studies, the surface conductivity of the glass surface was obtained using either conductive carbon layer extending from the glass surface to the frame or humidity inside an environmental chamber. This thesis investigates the influence of glass surface conductivity disruption on PV modules. In this study, conductive carbon was applied only on the module's glass surface without extending to the frame and the surface conductivity was disrupted (no carbon layer) at 2cm distance from the periphery of frame inner edges. This study was carried out under dry heat at two different temperatures (60 °C and 85 °C) and three different negative bias voltages (-300V, -400V, and -600V). To replicate closeness to the field conditions, half of the selected modules were pre-stressed under damp heat for 1000 hours (DH 1000) and the remaining half under 200 hours of thermal cycling (TC 200). When the surface continuity was disrupted by maintaining a 2 cm gap from the frame to the edge of the conductive layer, as demonstrated in this study, the degradation was found to be absent or negligibly small even after 35 hours of negative bias at elevated temperatures. This preliminary study appears to indicate that the modules could become immune to PID losses if the continuity of the glass surface conductivity is disrupted at the inside boundary of the frame. The surface conductivity of the glass, due to water layer formation in a humid condition, close to the frame could be disrupted just by applying a water repelling (hydrophobic) but high transmittance surface coating (such as Teflon) or modifying the frame/glass edges with water repellent properties.
ContributorsTatapudi, Sai Ravi Vasista (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Srinivasan, Devarajan (Committee member) / Rogers, Bradley (Committee member) / Arizona State University (Publisher)
Created2012
150573-Thumbnail Image.png
Description
This report presents the effects and analysis of the effects of Pulsed-Gas Metal Arc Welding's (P-GMAW) on Lean Duplex stainless steel. Although the welding of Duplex and Super Duplex Stainless steels have been well documented in both the laboratory and construction industry, the use of Lean Duplex has not. The

This report presents the effects and analysis of the effects of Pulsed-Gas Metal Arc Welding's (P-GMAW) on Lean Duplex stainless steel. Although the welding of Duplex and Super Duplex Stainless steels have been well documented in both the laboratory and construction industry, the use of Lean Duplex has not. The purpose for conducting this research is to ensure that the correct Ferrite-Austenite phase balance along with the correct welding procedures are used in the creation of reactor cores for new construction nuclear power generation stations. In this project the effects of Lincoln Electrics ER-2209 GMAW wire are studied. Suggestions and improvements to the welding process are then proposed in order to increase the weldability, strength, gas selection, and ferrite count. The weldability will be measured using X-Ray photography in order to determine if any inclusions, lack of fusion, or voids are found post welding, along with welder feedback. The ferritic point count method in accordance with ASTM A562-08, is employed so that the amount of ferrite and austenite can be calculated in the same manor that is currently being used in industry. These will then be correlated to the tensile strength and impact toughness in the heat-affected zone (HAZ) of the weld based on the ASTM A923 testing method.
ContributorsCarter, Roger (Author) / Rogers, Bradley (Thesis advisor) / Gintz, Jerry (Committee member) / Georgeou, Trian (Committee member) / Arizona State University (Publisher)
Created2012
149413-Thumbnail Image.png
Description
Building applied photovoltaics (BAPV) is a major application sector for photovoltaics (PV). Due to the negative temperature coefficient of power output, the performance of a PV module decreases as the temperature of the module increases. In hot climatic conditions, such as the summer in Arizona, the operating temperature of a

Building applied photovoltaics (BAPV) is a major application sector for photovoltaics (PV). Due to the negative temperature coefficient of power output, the performance of a PV module decreases as the temperature of the module increases. In hot climatic conditions, such as the summer in Arizona, the operating temperature of a BAPV module can reach as high as 90°C. Considering a typical 0.5%/°C power drop for crystalline silicon (c-Si) modules, a performance decrease of approximately 30% would be expected during peak summer temperatures due to the difference between rated temperature (25°C) and operating temperature (~90°C) of the modules. Also, in a worst-case scenario, such as partial shading of the PV cells of air gap-free BAPV modules, some of the components could attain temperatures that would be high enough to compromise the safety and functionality requirements of the module and its components. Based on the temperature and weather data collected over a year in Arizona, a mathematical thermal model has been developed and presented in this paper to predict module temperature for five different air gaps (0", 1", 2", 3", and 4"). For comparison, modules with a thermally-insulated (R30) back were evaluated to determine the worst-case scenario. This thesis also provides key technical details related to the specially-built, simulated rooftop structure; the mounting configuration of the PV modules on the rooftop structure; the LabVIEW program that was developed for data acquisition and the MATLAB program for developing the thermal models. In order to address the safety issue, temperature test results (obtained in accordance with IEC 61730-2 and UL 1703 safety standards) are presented and analyzed for nine different components of a PV module, i.e., the front glass, substrate/backsheet (polymer), PV cell, j-box ambient, j-box surface, positive terminal, backsheet inside j-box, field wiring, and diode. The temperature test results obtained for about 140 crystalline silicon modules from a large number of manufacturers who tested modules between 2006 and 2009 at ASU/TÜV-PTL were analyzed and presented in this paper under three test conditions, i.e., short-circuit, open-circuit, and short-circuit and shaded. Also, the nominal operating cell temperatures (NOCTs) of the BAPV modules and insulated-back PV modules are presented in this paper for use by BAPV module designers and installers.
ContributorsOh, Jaewon (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Rogers, Bradley R (Committee member) / Macia, Narciso F. (Committee member) / Arizona State University (Publisher)
Created2010
158114-Thumbnail Image.png
Description
Suction stabilized floats have been implemented into a variety of applications such as supporting wind turbines in off-shore wind farms and for stabilizing cargo ships. This thesis proposes an alternative use for the technology in creating a system of suction stabilized floats equipped with real time location modules to hel

Suction stabilized floats have been implemented into a variety of applications such as supporting wind turbines in off-shore wind farms and for stabilizing cargo ships. This thesis proposes an alternative use for the technology in creating a system of suction stabilized floats equipped with real time location modules to help first responders establish a localized coordinate system to assist in rescues. The floats create a stabilized platform for each anchor module due to the inverse slack tank effect established by the inner water chamber. The design of the float has also been proven to be stable in most cases of amplitudes and frequencies ranging from 0 to 100 except for when the frequency ranges from 23 to 60 Hz for almost all values of the amplitude. The modules in the system form a coordinate grid based off the anchors that can track the location of a tag module within the range of the system using ultra-wideband communications. This method of location identification allows responders to use the system in GPS denied environments. The system can be accessed through an Android app with Bluetooth communications in close ranges or through internet of things (IoT) using a module as a listener, a Raspberry Pi and an internet source. The system has proven to identify the location of the tag in moderate ranges with an approximate accuracy of the tag location being 15 cm.
ContributorsDye, Michaela (Author) / Redkar, Sangram (Thesis advisor) / Sugar, Thomas (Committee member) / Rogers, Bradley (Committee member) / Arizona State University (Publisher)
Created2020
189218-Thumbnail Image.png
Description
Solar photovoltaic (PV) generation has seen significant growth in 2021, with an increase of around 22% and exceeding 1000 TWh. However, this has also led to reliability and durability issues, particularly potential induced degradation (PID), which can reduce module output by up to 30%. This study uses cell- and module-level

Solar photovoltaic (PV) generation has seen significant growth in 2021, with an increase of around 22% and exceeding 1000 TWh. However, this has also led to reliability and durability issues, particularly potential induced degradation (PID), which can reduce module output by up to 30%. This study uses cell- and module-level analysis to investigate the impact of superstrate, encapsulant, and substrate on PID.The influence of different substrates and encapsulants is studied using one-cell modules, showing that substrates with poor water-blocking properties can worsen PID, and encapsulants with lower volumetric resistance can conduct easily under damp conditions, enabling PID mechanisms (results show maximum degradation of 9%). Applying an anti-soiling coating on the front glass (superstrate) reduces PID by nearly 53%. Typical superstrates have sodium which accelerates the PID process, and therefore, using such coatings can lessen the PID problem. At the module level, the study examines the influence of weakened interface adhesion strengths in traditional Glass-Backsheet (GB) and emerging Glass-Glass (GG) (primarily bifacial modules) constructions. The findings show nearly 64% more power degradation in GG modules than in GB. Moreover, the current methods for detecting PID use new modules, which can give inaccurate information instead of DH-stressed modules for PID testing, as done in this work. A comprehensive PID susceptibility analysis for multiple fresh bifacial constructions shows significant degradation from 20 to 50% in various constructions. The presence of glass as the substrate exacerbates the PID problem due to more ionic activity available from the two glass sides. Recovery experiments are also conducted to understand the extent of the PID issue. Overall, this study identifies, studies, and explains the impact of superstrate, substrate, and encapsulant on the underlying PID mechanisms. Various pre- and post-stress characterization tests, including light and dark current-voltage (I-V) tests, electroluminescence (EL) imaging, infrared (IR) imaging, and UV fluorescence (UVF) imaging, are used to evaluate the findings. This study is significant as it provides insights into the PID issues in solar PV systems, which can help improve their performance and reliability.
ContributorsMahmood, Farrukh ibne (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Rogers, Bradley (Committee member) / Oh, Jaewon (Committee member) / Rajadas, John (Committee member) / Arizona State University (Publisher)
Created2023
187539-Thumbnail Image.png
Description
This study introduces a new outdoor accelerated testing method called “Field Accelerated Stress Testing (FAST)” for photovoltaic (PV) modules performed at two different climatic sites in Arizona (hot-dry) and Florida (hot-humid). FAST is a combined accelerated test methodology that simultaneously accounts for all the field-specific stresses and accelerates only key

This study introduces a new outdoor accelerated testing method called “Field Accelerated Stress Testing (FAST)” for photovoltaic (PV) modules performed at two different climatic sites in Arizona (hot-dry) and Florida (hot-humid). FAST is a combined accelerated test methodology that simultaneously accounts for all the field-specific stresses and accelerates only key stresses, such as temperature, to forecast the failure modes by 2- 7 times in advance depending on the activation energy of the degradation mechanism (i.e., 10th year reliability issues can potentially be predicted in the 2nd year itself for an acceleration factor of 5). In this outdoor combined accelerated stress study, the temperatures of test modules were increased (by 16-19℃ compared to control modules) using thermal insulations on the back of the modules. All other conditions (ambient temperature, humidity, natural sunlight, wind speed, wind direction, and tilt angle) were left constant for both test modules (with back thermal insulation) and control modules (without thermal insulation). In this study, a total of sixteen 4-cell modules with two different construction types (glass/glass [GG] and glass/backsheet [GB]) and two different encapsulant types (ethylene vinyl acetate [EVA] and polyolefin elastomer [POE]), were investigated at both sites with eight modules at each site (four insulated and four non-insulated modules at each site). All the modules were extensively characterized before installation in the field and after field exposure over two years. The methods used for characterizing the devices included I-V (current-voltage curves), EL (electroluminescence), UVF (ultraviolet fluorescence), and reflectance. The key findings of this study are: i) the GG modules tend to operate at a higher temperature (1-3℃) than the GB modules at both sites of Arizona and Florida (a lower lifetime is expected for GG modules compared to GB modules); ii) the GG modules tend to experience a higher level of encapsulant discoloration and grid finger degradation than the GB modules at both sites (a higher level of the degradation rate is expected in GG modules compared to GB modules); and, iii) the EVA-based modules tend to have a higher level of discoloration and finger degradation compared to the POE-based modules at both sites.
ContributorsThayumanavan, Rishi Gokul (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Phelan, Patrick (Thesis advisor) / Calhoun, Ronald (Committee member) / Arizona State University (Publisher)
Created2023
157020-Thumbnail Image.png
Description
Global photovoltaic (PV) module installation in 2018 is estimated to exceed 100 GW, and crystalline Si (c-Si) solar cell-based modules have a share more than 90% of the global PV market. To reduce the social cost of PV electricity, further developments in reliability of solar panels are expected. These will

Global photovoltaic (PV) module installation in 2018 is estimated to exceed 100 GW, and crystalline Si (c-Si) solar cell-based modules have a share more than 90% of the global PV market. To reduce the social cost of PV electricity, further developments in reliability of solar panels are expected. These will lead to realize longer module lifetime and reduced levelized cost of energy. As many as 86 failure modes are observed in PV modules [1] and series resistance increase is one of the major durability issues of all. Series resistance constitutes emitter sheet resistance, metal-semiconductor contact resistance, and resistance across the metal-solder ribbon. Solder bond degradation at the cell interconnect is one of the primary causes for increase in series resistance, which is also considered to be an invisible defect [1]. Combination of intermetallic compounds (IMC) formation during soldering and their growth due to solid state diffusion over its lifetime result in formation of weak interfaces between the solar cell and the interconnect. Thermal cycling under regular operating conditions induce thermo-mechanical fatigue over these weak interfaces resulting in contact reduction or loss. Contact reduction or loss leads to increase in series resistance which further manifests into power and fill factor loss. The degree of intermixing of metallic interfaces and contact loss depends on climatic conditions as temperature and humidity (moisture ingression into the PV module laminate) play a vital role in reaction kinetics of these layers. Modules from Arizona and Florida served as a good sample set to analyze the effects of hot and humid climatic conditions respectively. The results obtained in the current thesis quantifies the thickness of IMC formation from SEM-EDS profiles, where similar modules obtained from different climatic conditions were compared. The results indicate the thickness of the IMC and detachment degree to be growing with age and operating temperatures of the module. This can be seen in CuxSny IMC which is thicker in the case of Arizona module. The results obtained from FL

ii

aged modules also show that humidity accelerates the formation of IMC as they showed thicker AgxSny layer and weak interconnect-contact interfaces as compared to Arizona modules. It is also shown that climatic conditions have different effects on rate at which CuxSny and AgxSny intermetallic compounds are formed.
ContributorsBuddha, Viswa Sai Pavan (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Alford, Terry (Thesis advisor) / Srinivasan, Devarajan (Committee member) / Arizona State University (Publisher)
Created2018