Matching Items (37)
Filtering by

Clear all filters

151166-Thumbnail Image.png
Description
High Pressure Superheater 1 (HPSH1) is the first heat exchange tube bank inside the Heat Recovery Steam Generator (HRSG) to encounter exhaust flue gas from the gas turbine of a Combined Cycle Power Plant. Steam flowing through the HPSH1 gains heat from the flue gas prior to entering the steam

High Pressure Superheater 1 (HPSH1) is the first heat exchange tube bank inside the Heat Recovery Steam Generator (HRSG) to encounter exhaust flue gas from the gas turbine of a Combined Cycle Power Plant. Steam flowing through the HPSH1 gains heat from the flue gas prior to entering the steam turbine. During cold start-ups, rapid temperature changes in operating condition give rise to significant temperature gradients in the thick-walled components of HPSH1 (manifolds, links, and headers). These temperature gradients produce thermal-structural stresses in the components. The resulting high cycle fatigue is a major concern as this can lead to premature failure of the components. The main objective of this project was to address the thermal-structural stress field induced in HPSH1 during a typical cold start-up transient. To this end, computational fluid dynamics (CFD) was used to carry out the thermal-fluid analysis of HPSH1. The calculated temperature distributions in the component walls were the primary inputs for the finite element (FEA) model that performed structural analysis. Thermal-structural analysis was initially carried out at full-load steady state condition in order to gain confidence in the CFD and FEA methodologies. Results of the full-load steady state thermal-fluid analysis were found in agreement with the temperature values measured at specific locations on the outer surfaces of the inlet links and outlet manifold. It was found from the subsequent structural analysis that peak effective stresses were located at the connecting regions of the components and were well below the allowed stress values. Higher temperature differences were observed between the thick-walled HPSH1 components during the cold start-up transient as compared to the full-load steady state operating condition. This was because of the rapid temperature changes that occurred, especially in the steam temperature at the HPSH1 entry, and the different rates of heating or cooling for components with different wall thicknesses. Results of the transient thermal-fluid analysis will be used in future to perform structural analysis of the HPSH1. The developed CFD and FEA models are capable of analyzing various other transients (e.g., hot start-up and shut-down) and determine their influence on the durability of plant components.
ContributorsHardeep Singh (Author) / Roy, Ramendra P. (Thesis advisor) / Lee, Taewoo (Thesis advisor) / Mignolet, Marc (Committee member) / Arizona State University (Publisher)
Created2012
150547-Thumbnail Image.png
Description
This dissertation presents methods for addressing research problems that currently can only adequately be solved using Quality Reliability Engineering (QRE) approaches especially accelerated life testing (ALT) of electronic printed wiring boards with applications to avionics circuit boards. The methods presented in this research are generally applicable to circuit boards, but

This dissertation presents methods for addressing research problems that currently can only adequately be solved using Quality Reliability Engineering (QRE) approaches especially accelerated life testing (ALT) of electronic printed wiring boards with applications to avionics circuit boards. The methods presented in this research are generally applicable to circuit boards, but the data generated and their analysis is for high performance avionics. Avionics equipment typically requires 20 years expected life by aircraft equipment manufacturers and therefore ALT is the only practical way of performing life test estimates. Both thermal and vibration ALT induced failure are performed and analyzed to resolve industry questions relating to the introduction of lead-free solder product and processes into high reliability avionics. In chapter 2, thermal ALT using an industry standard failure machine implementing Interconnect Stress Test (IST) that simulates circuit board life data is compared to real production failure data by likelihood ratio tests to arrive at a mechanical theory. This mechanical theory results in a statistically equivalent energy bound such that failure distributions below a specific energy level are considered to be from the same distribution thus allowing testers to quantify parameter setting in IST prior to life testing. In chapter 3, vibration ALT comparing tin-lead and lead-free circuit board solder designs involves the use of the likelihood ratio (LR) test to assess both complete failure data and S-N curves to present methods for analyzing data. Failure data is analyzed using Regression and two-way analysis of variance (ANOVA) and reconciled with the LR test results that indicating that a costly aging pre-process may be eliminated in certain cases. In chapter 4, vibration ALT for side-by-side tin-lead and lead-free solder black box designs are life tested. Commercial models from strain data do not exist at the low levels associated with life testing and need to be developed because testing performed and presented here indicate that both tin-lead and lead-free solders are similar. In addition, earlier failures due to vibration like connector failure modes will occur before solder interconnect failures.
ContributorsJuarez, Joseph Moses (Author) / Montgomery, Douglas C. (Thesis advisor) / Borror, Connie M. (Thesis advisor) / Gel, Esma (Committee member) / Mignolet, Marc (Committee member) / Pan, Rong (Committee member) / Arizona State University (Publisher)
Created2012
156057-Thumbnail Image.png
Description
The stability of nanocrystalline microstructural features allows structural materials to be synthesized and tested in ways that have heretofore been pursued only on a limited basis, especially under dynamic loading combined with temperature effects. Thus, a recently developed, stable nanocrystalline alloy is analyzed here for quasi-static (<100 s-1) and dynamic

The stability of nanocrystalline microstructural features allows structural materials to be synthesized and tested in ways that have heretofore been pursued only on a limited basis, especially under dynamic loading combined with temperature effects. Thus, a recently developed, stable nanocrystalline alloy is analyzed here for quasi-static (<100 s-1) and dynamic loading (103 to 104 s-1) under uniaxial compression and tension at multiple temperatures ranging from 298-1073 K. After mechanical tests, microstructures are analyzed and possible deformation mechanisms are proposed. Following this, strain and strain rate history effects on mechanical behavior are analyzed using a combination of quasi-static and dynamic strain rate Bauschinger testing. The stable nanocrystalline material is found to exhibit limited flow stress increase with increasing strain rate as compared to that of both pure, coarse grained and nanocrystalline Cu. Further, the material microstructural features, which includes Ta nano-dispersions, is seen to pin dislocation at quasi-static strain rates, but the deformation becomes dominated by twin nucleation at high strain rates. These twins are pinned from further growth past nucleation by the Ta nano-dispersions. Testing of thermal and load history effects on the mechanical behavior reveals that when thermal energy is increased beyond 200 °C, an upturn in flow stress is present at strain rates below 104 s-1. However, in this study, this simple assumption, established 50-years ago, is shown to break-down when the average grain size and microstructural length-scale is decreased and stabilized below 100nm. This divergent strain-rate behavior is attributed to a unique microstructure that alters slip-processes and their interactions with phonons; thus enabling materials response with a constant flow-stress even at extreme conditions. Hence, the present study provides a pathway for designing and synthesizing a new-level of tough and high-energy absorbing materials.
ContributorsTurnage, Scott Andrew (Author) / Solanki, Kiran N (Thesis advisor) / Rajagopalan, Jagannathan (Committee member) / Peralta, Pedro (Committee member) / Darling, Kristopher A (Committee member) / Mignolet, Marc (Committee member) / Arizona State University (Publisher)
Created2017
156927-Thumbnail Image.png
Description
This paper describes an effort to bring wing structural stiffness and aeroelastic considerations early in the conceptual design process with an automated tool. Stiffness and aeroelasticity can be well represented with a stochastic model during conceptual design because of the high level of uncertainty and variability in wing non-structural mass

This paper describes an effort to bring wing structural stiffness and aeroelastic considerations early in the conceptual design process with an automated tool. Stiffness and aeroelasticity can be well represented with a stochastic model during conceptual design because of the high level of uncertainty and variability in wing non-structural mass such as fuel loading and control surfaces. To accomplish this, an improvement is made to existing design tools utilizing rule based automated design to generate wing torque box geometry from a specific wing outer mold-line. Simple analysis on deflection and inferred stiffness shows how early conceptual design choices can strongly impact the stiffness of the structure. The impacts of design choices and how the buckling constraints drive structural weight in particular examples are discussed. The model is then carried further to include a finite element model (FEM) to analyze resulting mode shapes and frequencies for use in aeroelastic analysis. The natural frequencies of several selected wing torque boxes across a range of loading cases are compared.
ContributorsMiskin, Daniel L (Author) / Takahashi, Timothy T (Thesis advisor) / Mignolet, Marc (Committee member) / Murthy, Raghavendra (Committee member) / Arizona State University (Publisher)
Created2018
156952-Thumbnail Image.png
Description
Robotic swarms can potentially perform complicated tasks such as exploration and mapping at large space and time scales in a parallel and robust fashion. This thesis presents strategies for mapping environmental features of interest – specifically obstacles, collision-free paths, generating a metric map and estimating scalar density fields– in an

Robotic swarms can potentially perform complicated tasks such as exploration and mapping at large space and time scales in a parallel and robust fashion. This thesis presents strategies for mapping environmental features of interest – specifically obstacles, collision-free paths, generating a metric map and estimating scalar density fields– in an unknown domain using data obtained by a swarm of resource-constrained robots. First, an approach was developed for mapping a single obstacle using a swarm of point-mass robots with both directed and random motion. The swarm population dynamics are modeled by a set of advection-diffusion-reaction partial differential equations (PDEs) in which a spatially-dependent indicator function marks the presence or absence of the obstacle in the domain. The indicator function is estimated by solving an optimization problem with PDEs as constraints. Second, a methodology for constructing a topological map of an unknown environment was proposed, which indicates collision-free paths for navigation, from data collected by a swarm of finite-sized robots. As an initial step, the number of topological features in the domain was quantified by applying tools from algebraic topology, to a probability function over the explored region that indicates the presence of obstacles. A topological map of the domain is then generated using a graph-based wave propagation algorithm. This approach is further extended, enabling the technique to construct a metric map of an unknown domain with obstacles using uncertain position data collected by a swarm of resource-constrained robots, filtered using intensity measurements of an external signal. Next, a distributed method was developed to construct the occupancy grid map of an unknown environment using a swarm of inexpensive robots or mobile sensors with limited communication. In addition to this, an exploration strategy which combines information theoretic ideas with Levy walks was also proposed. Finally, the problem of reconstructing a two-dimensional scalar field using observations from a subset of a sensor network in which each node communicates its local measurements to its neighboring nodes was addressed. This problem reduces to estimating the initial condition of a large interconnected system with first-order linear dynamics, which can be solved as an optimization problem.
ContributorsRamachandran, Ragesh Kumar (Author) / Berman, Spring M (Thesis advisor) / Mignolet, Marc (Committee member) / Artemiadis, Panagiotis (Committee member) / Marvi, Hamid (Committee member) / Robinson, Michael (Committee member) / Arizona State University (Publisher)
Created2018
133909-Thumbnail Image.png
Description
The field of robotics is rapidly expanding, and with it, the methods of teaching and introducing students must also advance alongside new technologies. There is a challenge in robotics education, especially at high school levels, to expose them to more modern and practical robots. One way to bridge this ga

The field of robotics is rapidly expanding, and with it, the methods of teaching and introducing students must also advance alongside new technologies. There is a challenge in robotics education, especially at high school levels, to expose them to more modern and practical robots. One way to bridge this gap is human-robot interaction for a more hands-on and impactful experience that will leave students more interested in pursuing the field. Our project is a Robotic Head Kit that can be used in an educational setting to teach about its electrical, mechanical, programming, and psychological concepts. We took an existing robot head prototype and further advanced it so it can be easily assembled while still maintaining human complexity. Our research for this project dove into the electronics, mechanics, software, and even psychological barriers present in order to advance the already existing head design. The kit we have developed combines the field of robotics with psychology to create and add more life-like features and functionality to the robot, nicknamed "James Junior." The goal of our Honors Thesis was to initially fix electrical, mechanical, and software problems present. We were then tasked to run tests with high school students to validate our assembly instructions while gathering their observations and feedback about the robot's programmed reactions and emotions. The electrical problems were solved with custom PCBs designed to power and program the existing servo motors on the head. A new set of assembly instructions were written and modifications to the 3D printed parts were made for the kit. In software, existing code was improved to implement a user interface via keypad and joystick to give students control of the robot head they construct themselves. The results of our tests showed that we were not only successful in creating an intuitive robot head kit that could be easily assembled by high school students, but we were also successful in programming human-like expressions that could be emotionally perceived by the students.
ContributorsRathke, Benjamin (Co-author) / Rivera, Gerardo (Co-author) / Sodemann, Angela (Thesis director) / Itagi, Manjunath (Committee member) / Engineering Programs (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
Description
The action/adventure game Grad School: HGH is the final, extended version of a BME Prototyping class project in which the goal was to produce a zombie-themed game that teaches biomedical engineering concepts. The gameplay provides fast paced, exciting, and mildly addicting rooms that the player must battle and survive through,

The action/adventure game Grad School: HGH is the final, extended version of a BME Prototyping class project in which the goal was to produce a zombie-themed game that teaches biomedical engineering concepts. The gameplay provides fast paced, exciting, and mildly addicting rooms that the player must battle and survive through, followed by an engineering puzzle that must be solved in order to advance to the next room. The objective of this project was to introduce the core concepts of BME to prospective students, rather than attempt to teach an entire BME curriculum. Based on user testing at various phases in the project, we concluded that the gameplay was engaging enough to keep most users' interest through the educational puzzles, and the potential for expanding this project to reach an even greater audience is vast.
ContributorsNitescu, George (Co-author) / Medawar, Alexandre (Co-author) / Spano, Mark (Thesis director) / LaBelle, Jeffrey (Committee member) / Guiang, Kristoffer (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
Description
The field of soft robotics is a very quickly growing field that has yet to be fully explored or implemented in all of the possible applications. Soft robotics shows the greatest degree of possibility for mimicking biological systems effectively and accurately. This study seeks to set the groundwork for the

The field of soft robotics is a very quickly growing field that has yet to be fully explored or implemented in all of the possible applications. Soft robotics shows the greatest degree of possibility for mimicking biological systems effectively and accurately. This study seeks to set the groundwork for the development of a biomimetic nautilus using soft robotic methods. The study shows background research and discusses the methods used to develop a nautilus themed sub aquatic robot that uses a double bladder system and a pump to generate thrust for movement. The study shows how the unit would be fabricated and constructed. The study also explores why the second stage of the design failed and how it could potentially be fixed in future iterations.
ContributorsCarlson, Caleb Elijah (Author) / Polygerinos, Panagiotis (Thesis director) / Parsey, John (Committee member) / Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
133513-Thumbnail Image.png
Description
The goal of our research was to develop and validate a method for predicting the mechanical behavior of Additively Manufactured multi-material honeycomb structures. Multiple approaches already exist in the field for modeling the behavior of cellular materials, including the bulk property assumption, homogenization and strut level characterization [1]. With the

The goal of our research was to develop and validate a method for predicting the mechanical behavior of Additively Manufactured multi-material honeycomb structures. Multiple approaches already exist in the field for modeling the behavior of cellular materials, including the bulk property assumption, homogenization and strut level characterization [1]. With the bulk property approach, the structure is assumed to behave according to what is known about the material in its bulk formulation, without regard to its geometry or scale. With the homogenization technique, the specimen that is being tested is treated as a solid material within the simulation environment even if the physical specimen is not. Then, reduced mechanical properties are assigned to the specimen to account for any voids that exist within the physical specimen. This approach to mechanical behavior prediction in cellular materials is shape dependent. In other words, the same model cannot be used from one specimen to the next if the cell shapes of those lattices differ in any way. When using the strut level characterization approach, a single strut (the connecting member between nodes constituting a cellular material) is isolated and tested. With this approach, there tends to be a significant deviation in the experimental data due to the small size of the isolated struts. Yet it has the advantage of not being shape sensitive, at least in principle. The method that we developed, and chose to test lies within the latter category, and is what we have coined as the Representative Lattice Element (RLE) Method. This method is modeled after the well-established Representative Volume Element (RVE) method [2]. We define the RLE as the smallest unit over which mechanical tests can be conducted that will provide results which are representative of the larger lattice structure. In other words, the theory is that a single member (or beam in this case) of a honeycomb structure can be taken, tests can be conducted on this member to determine the mechanical properties of the representative lattice element and the results will be representative of the mechanical behavior whole structure. To investigate this theory, we designed specimens, conducted various tensile and compression tests, analyzed the recorded data, conducted a micromechanics study, and performed structural simulation work using commercial Finite Element Analysis software.
ContributorsSalti, Ziyad Zuheir (Co-author) / Eppley, Trevor (Co-author) / Bhate, Dhruv (Thesis director) / Song, Kenan (Committee member) / Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
153635-Thumbnail Image.png
Description
A control method based on the phase angle is used to control oscillating systems. The phase oscillator uses the sine and cosine of the phase angle to change key properties of a mass-spring-damper system, including amplitude, frequency, and equilibrium. An inverted pendulum is used to show a further application of

A control method based on the phase angle is used to control oscillating systems. The phase oscillator uses the sine and cosine of the phase angle to change key properties of a mass-spring-damper system, including amplitude, frequency, and equilibrium. An inverted pendulum is used to show a further application of the phase oscillator. Two methods of control based on the phase oscillator are used for swing-up and balancing of the pendulum. The first control method involves two separate stages. The scenarios where this control works are discussed. The second control method uses variable coefficients to result in a smooth transition between swing-up and balancing.
ContributorsBates, Andrew (Author) / Sugar, Thomas (Thesis advisor) / Redkar, Sangram (Committee member) / Mignolet, Marc (Committee member) / Arizona State University (Publisher)
Created2015