Matching Items (5)
Filtering by

Clear all filters

134312-Thumbnail Image.png
Description
The Phoenix CubeSat is a 3U Earth imaging CubeSat which will take infrared (IR) photos of cities in the United Stated to study the Urban Heat Island Effect, (UHI) from low earth orbit (LEO). It has many different components that need to be powered during the life of its mission.

The Phoenix CubeSat is a 3U Earth imaging CubeSat which will take infrared (IR) photos of cities in the United Stated to study the Urban Heat Island Effect, (UHI) from low earth orbit (LEO). It has many different components that need to be powered during the life of its mission. The only power source during the mission will be its solar panels. It is difficult to calculate power generation from solar panels by hand because of the different orientations the satellite will be positioned in during orbit; therefore, simulation will be used to produce power generation data. Knowing how much power is generated is integral to balancing the power budget, confirming whether there is enough power for all the components, and knowing whether there will be enough power in the batteries during eclipse. This data will be used to create an optimal design for the Phoenix CubeSat to accomplish its mission.
ContributorsBarakat, Raymond John (Author) / White, Daniel (Thesis director) / Kitchen, Jennifer (Committee member) / Electrical Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
133639-Thumbnail Image.png
Description
Current technology does not allow for the full amount of power produced by solar arrays (PV) on spacecraft to be utilized. The arrays are designed with non-reconfigurable architectures and sent on fifteen to twenty year long missions. They cannot be changed once they are in space, so the arrays are

Current technology does not allow for the full amount of power produced by solar arrays (PV) on spacecraft to be utilized. The arrays are designed with non-reconfigurable architectures and sent on fifteen to twenty year long missions. They cannot be changed once they are in space, so the arrays are designed for the end of life. Throughout their lifetime, solar arrays can degrade in power producing capabilities anywhere from 20% to 50%. Because there is such a drastic difference in the beginning and end of life power production, and because they cannot be reconfigured, a new design has been found necessary in order to increase power production. Reconfiguration allows the solar arrays to achieve maximum power producing capabilities at both the beginning and end of their lives. With the potential to increase power production by 50%, the reconfiguration design consists of a switching network to be able to utilize any combination of cells. The design for reconfiguration must meet the power requirements of the solar array. This thesis will explore different designs for reconfiguration, as well as possible switches for implementation. It will also review other methods to increase power production, as well as discuss future work in this field.
ContributorsJohnson, Everett Hope (Author) / Kitchen, Jennifer (Thesis director) / Ozev, Sule (Committee member) / School of International Letters and Cultures (Contributor) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
Description
Volume depletion can lead to migraines, dizziness, and significant decreases in a subject's ability to physically perform. A major cause of volume depletion is dehydration, or loss in fluids due to an imbalance in fluid intake to fluid excretion. Because proper levels of hydration are necessary in order to maintain

Volume depletion can lead to migraines, dizziness, and significant decreases in a subject's ability to physically perform. A major cause of volume depletion is dehydration, or loss in fluids due to an imbalance in fluid intake to fluid excretion. Because proper levels of hydration are necessary in order to maintain both short and long term health, the ability to monitor hydration levels is growing in clinical demand. Although devices capable of monitoring hydration level exist, these devices are expensive, invasive, or inaccurate and do not offer a continuous mode of measurement. The ideal hydration monitor for consumer use needs to be characterized by its portability, affordability, and accuracy. Also, this device would need to be noninvasive and offer continuous hydration monitoring in order to accurately assess fluctuations in hydration data throughout a specified time period. One particular method for hydration monitoring that fits the majority of these criteria is known as bioelectric impedance analysis (BIA). Although current devices using BIA do not provide acceptable levels of accuracy, portability, or continuity in data collection, BIA could potentially be modified to fit many, if not all, desired customer specifications. The analysis presented here assesses the viability of using BIA as a new standard in hydration level measurement. The analysis uses data collected from 22 subjects using an existing device that employs BIA. A regression derived for estimating TBW based on the parameters of age, weight, height, sex, and impedance is presented. Using impedance data collected for each subject, a regression was also derived for estimating impedance based on the factors of age, weight, height, and sex. The derived regression was then used to calculate a new impedance value for each subject, and these new impedance values were used to estimate TBW. Through a paired-t test between the TBW values derived by using the direct measurements versus the calculated measurements of impedance, the two samples were found to be comparable. Considerations for BIA as a noninvasive measurement of hydration are discussed.
ContributorsTenorio, Jorge Antonio (Author) / LaBelle, Jeffrey (Thesis director) / Pizziconi, Vincent (Committee member) / Spano, Mark (Committee member) / Barrett, The Honors College (Contributor) / W. P. Carey School of Business (Contributor) / Harrington Bioengineering Program (Contributor)
Created2013-05
133434-Thumbnail Image.png
Description
Solar panels need to be both cost effective and environmentally friendly to compete with traditional energy forms. Photovoltaic recycling has the potential to mitigate the harm of waste, which is often landfilled, while putting material back into the manufacturing process. Out of many, three methods show much promise: Full Recovery

Solar panels need to be both cost effective and environmentally friendly to compete with traditional energy forms. Photovoltaic recycling has the potential to mitigate the harm of waste, which is often landfilled, while putting material back into the manufacturing process. Out of many, three methods show much promise: Full Recovery End-of-Life Photovoltaic (FRELP), mechanical, and sintering-based recycling. FRELP recycling has quickly gained prominence in Europe and promises to fully recover the components in a solar cell. The mechanical method has produced high yields of valuable materials using basic and inexpensive processes. The sintering method has the potential to tap into a large market for feldspar. Using a levelized cost of electricity (LCOE) analysis, the three methods could be compared on an economic basis. This showed that the mechanical method is least expensive, and the sintering method is the most expensive. Using this model, all recycling methods are less cost effective than the control analysis without recycling. Sensitivity analyses were then done on the effect of the discount rate, capacity factor, and lifespan on the LCOE. These results showed that the change in capacity factor had the most significant effect on the levelized cost of electricity. A final sensitivity analysis was done based on the decreased installation and balance of systems costs in 2025. With a 55% decrease in these costs, the LCOE decreased by close to $0.03/kWh for each method. Based on these results, the cost of each recycling method would be a more considerable proportion of the overall LCOE of the solar farm.
ContributorsMeister, William Frederick (Author) / Goodnick, Stephen (Thesis director) / Phelan, Patrick (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
132733-Thumbnail Image.png
Description
Nuclear power has recently experienced a resurgence in interest due to its ability to generate significant amounts of relatively clean energy. However, the overall size of nuclear power plants still poses a problem to future advancements. The bulkiness of components in the plant contribute to longer construction times, higher building

Nuclear power has recently experienced a resurgence in interest due to its ability to generate significant amounts of relatively clean energy. However, the overall size of nuclear power plants still poses a problem to future advancements. The bulkiness of components in the plant contribute to longer construction times, higher building and maintenance costs, and the isolation of nuclear plants from populated areas. The goal of this project was to analyze the thermal performance of nanocrystalline copper tantalum (NC Cu-Ta) inside the steam generator of a pressurized water reactor to see how much the size of these units could be reduced without affecting the amount of heat transferred through it. The analysis revealed that using this material, with its higher thermal conductivity than the traditional Inconel Alloy 600 that is typically used in steam generators, it is possible to reduce the height of a steam generator from 21 meters to about 18.6 meters, signifying a 11.6% reduction in height. This analysis also revealed a diminishing return that occurs with increasing the thermal conductivity on both reducing the required heat transfer area and increasing the overall heat transfer coefficient.
ContributorsRiese, Alexander (Author) / Phelan, Patrick (Thesis director) / Bocanegra, Luis (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05