Matching Items (4)
Filtering by

Clear all filters

156949-Thumbnail Image.png
Description
Laser radars or lidar’s have been used extensively to remotely study winds within the atmospheric boundary layer and atmospheric transport. Lidar sensors have become an important tool within the meteorology and the wind energy community. For example, Doppler lidars are used frequently in wind resource assessment, wind turbine control as

Laser radars or lidar’s have been used extensively to remotely study winds within the atmospheric boundary layer and atmospheric transport. Lidar sensors have become an important tool within the meteorology and the wind energy community. For example, Doppler lidars are used frequently in wind resource assessment, wind turbine control as well as in atmospheric science research. A Time of Flight based (ToF) direct detection lidar sensor is used in vehicles to navigate through complex and dynamic environments autonomously. These optical sensors are used to map the environment around the car accurately for perception and localization tasks that help achieve complete autonomy.

This thesis begins with a detailed discussion on the fundamentals of a Doppler lidar system. The laser signal flow path to and from the target, the optics of the system and the core signal processing algorithms used to extract velocity information, were studied to get closer to the hardware of a Doppler lidar sensor. A Doppler lidar simulator was built to study the existing signal processing algorithms to detect and estimate doppler frequency, and radial velocity information. Understanding the sensor and its processing at the hardware level is necessary to develop new algorithms to detect and track specific flow structures in the atmosphere. For example, the aircraft vortices have been a topic of extensive research and doppler lidars have proved to be a valuable sensor to detect and track these coherent flow structures. Using the lidar simulator a physics based doppler lidar vortex algorithm is tested on simulated data to track a pair of counter rotating aircraft vortices.



At a system level the major components of a time of flight lidar is very similar to a Doppler lidar. The fundamental physics of operation is however different. While doppler lidars are used for radial velocity measurement, ToF sensors as the name suggests provides precise depth measurements by measuring time of flight between the transmitted and the received pulses. The second part of this dissertation begins to explore the details of ToF lidar system. A system level design, to build a ToF direct detection lidar system is presented. Different lidar sensor modalities that are currently used with sensors in the market today for automotive applications were evaluated and a 2D MEMS based scanning lidar system was designed using off-the shelf components.

Finally, a range of experiments and tests were completed to evaluate the performance of each sub-component of the lidar sensor prototype. A major portion of the testing was done to align the optics of the system and to ensure maximum field of view overlap for the bi-static laser sensor. As a laser range finder, the system demonstrated capabilities to detect hard targets as far as 32 meters. Time to digital converter (TDC) and an analog to digital converter (ADC) was used for providing accurate timing solutions for the lidar prototype. A Matlab lidar model was built and used to perform trade-off studies that helped choosing components to suit the sensor design specifications.

The size, weight and cost of these lidar sensors are still very high and thus making it harder for automotive manufacturers to integrate these sensors into their vehicles. Ongoing research in this field is determined to find a solution that guarantees very high performance in real time and lower its cost over the next decade as components get cheaper and can be seamlessly integrated with cars to improve on-road safety.
ContributorsBhaskaran, Sreevatsan (Author) / Calhoun, Ronald J (Thesis advisor) / Dahm, Werner (Committee member) / Huang, Huei-Ping (Committee member) / Chen, Kang Pin (Committee member) / Choukulkar, Aditya (Committee member) / Arizona State University (Publisher)
Created2018
153834-Thumbnail Image.png
Description
First, in a large-scale structure, a 3-D CFD model was built to simulate flow and temperature distributions. The flow patterns and temperature distributions are characterized and validated through spot measurements. The detailed understanding of them then allows for optimization of the HVAC configuration because identification of the problematic flow patterns

First, in a large-scale structure, a 3-D CFD model was built to simulate flow and temperature distributions. The flow patterns and temperature distributions are characterized and validated through spot measurements. The detailed understanding of them then allows for optimization of the HVAC configuration because identification of the problematic flow patterns and temperature mis-distributions leads to some corrective measures. Second, an appropriate form of the viscous dissipation term in the integral form of the conservation equation was considered, and the effects of momentum terms on the computed drop size in pressure-atomized sprays were examined. The Sauter mean diameter (SMD) calculated in this manner agrees well with experimental data of the drop velocities and sizes. Using the suggested equation with the revised treatment of liquid momentum setup, injection parameters can be directly input to the system of equations. Thus, this approach is capable of incorporating the effects of injection parameters for further considerations of the drop and velocity distributions under a wide range of spray geometry and injection conditions. Lastly, groundwater level estimation was investigated using compressed sensing (CS). To satisfy a general property of CS, a random measurement matrix was used, the groundwater network was constructed, and finally the l-1 optimization was run. Through several validation tests, correct estimation of groundwater level by CS was shown. Using this setup, decreasing trends in groundwater level in the southwestern US was shown. The suggested method is effective in that the total measurements of registered wells can be reduced down by approximately 42 %, sparse data can be visualized and a possible approach for groundwater management during extreme weather changes, e.g. in California, was demonstrated.
ContributorsLee, Joon Young (Author) / Lee, Taewoo (Thesis advisor) / Huang, Huei-Ping (Committee member) / Lopez, Juan (Committee member) / Phelan, Patrick (Committee member) / Chen, Kangping (Committee member) / Arizona State University (Publisher)
Created2015
168313-Thumbnail Image.png
Description
The fast pace of global urbanization makes cities the hotspots of population density and anthropogenic activities, leading to intensive emissions of heat and carbon dioxide (CO2), a primary greenhouse gas. Urban climate scientists have been actively seeking effective mitigation strategies over the past decades, aiming to improve the environmental quality

The fast pace of global urbanization makes cities the hotspots of population density and anthropogenic activities, leading to intensive emissions of heat and carbon dioxide (CO2), a primary greenhouse gas. Urban climate scientists have been actively seeking effective mitigation strategies over the past decades, aiming to improve the environmental quality for urban dwellers. Prior studies have identified the role of urban green spaces in the relief of urban heat stress. Yet little effort was devoted to quantify their contribution to local and regional CO2 budget. In fact, urban biogenic CO2 fluxes from photosynthesis and respiration are influenced by the microclimate in the built environment and are sensitive to anthropogenic disturbance. The high complexity of the urban ecosystem leads to an outstanding challenge for numerical urban models to disentangling and quantifying the interplay between heat and carbon dynamics.This dissertation aims to advance the simulation of thermal and carbon dynamics in urban land surface models, and to investigate the role of urban greening practices and urban system design in mitigating heat and CO2 emissions. The biogenic CO2 exchange in cities is parameterized by incorporating plant physiological functions into an advanced single-layer urban canopy model in the built environment. The simulation result replicates the microclimate and CO2 flux patterns measured from an eddy covariance system over a residential neighborhood in Phoenix, Arizona with satisfactory accuracy. Moreover, the model decomposes the total CO2 flux from observation and identifies the significant CO2 efflux from soil respiration. The model is then applied to quantify the impact of urban greening practices on heat and biogenic CO2 exchange over designed scenarios. The result shows the use of urban greenery is effective in mitigating both urban heat and carbon emissions, providing environmental co-benefit in cities. Furthermore, to seek the optimal urban system design in terms of thermal comfort and CO2 reduction, a multi-objective optimization algorithm is applied to the machine learning surrogates of the physical urban land surface model. There are manifest trade-offs among ameliorating diverse urban environmental indicators despite the co-benefit from urban greening. The findings of this dissertation, along with its implications on urban planning and landscaping management, would promote sustainable urban development strategies for achieving optimal environmental quality for policy makers, urban residents, and practitioners.
ContributorsLi, Peiyuan (Author) / Wang, Zhihua (Thesis advisor) / Vivoni, Enrique (Committee member) / Huang, Huei-Ping (Committee member) / Myint, Soe (Committee member) / Xu, Tianfang (Committee member) / Arizona State University (Publisher)
Created2021
157707-Thumbnail Image.png
Description
This dissertation studies two outstanding microscale fluid mechanics problems: 1) mechanisms of gas production from the nanopores of shale; 2) enhanced mass flow rate in steady compressible gas flow through a micro-conduit.

The dissertation starts with a study of a volumetric expansion driven drainage flow of a viscous compressible fluid from

This dissertation studies two outstanding microscale fluid mechanics problems: 1) mechanisms of gas production from the nanopores of shale; 2) enhanced mass flow rate in steady compressible gas flow through a micro-conduit.

The dissertation starts with a study of a volumetric expansion driven drainage flow of a viscous compressible fluid from a small capillary and channel in the low Mach number limit. An analysis based on the linearized compressible Navier-Stokes equations with no-slip condition shows that fluid drainage is controlled by the slow decay of the acoustic wave inside the capillary and the no-slip flow exhibits a slip-like mass flow rate. Numerical simulations are also carried out for drainage from a small capillary to a reservoir or a contraction of finite size. By allowing the density wave to escape the capillary, two wave leakage mechanisms are identified, which are dependent on the capillary length to radius ratio, reservoir size and acoustic Reynolds number. Empirical functions are generated for an effective diffusive coefficient which allows simple calculations of the drainage rate using a diffusion model without the presence of the reservoir or contraction.

In the second part of the dissertation, steady viscous compressible flow through a micro-conduit is studied using compressible Navier-Stokes equations with no-slip condition. The mathematical theory of Klainerman and Majda for low Mach number flow is employed to derive asymptotic equations in the limit of small Mach number. The overall flow, a combination of the Hagen-Poiseuille flow and a diffusive velocity shows a slip-like mass flow rate even through the overall velocity satisfies the no-slip condition. The result indicates that the classical formulation includes self-diffusion effect and it embeds the Extended Navier-Stokes equation theory (ENSE) without the need of introducing additional constitutive hypothesis or assuming slip on the boundary. Contrary to most ENSE publications, the predicted mass flow rate is still significantly below the measured data based on an extensive comparison with thirty-five experiments.
ContributorsShen, Di (Author) / Chen, Kangping (Thesis advisor) / Herrmann, Marcus (Committee member) / Huang, Huei-Ping (Committee member) / Calhoun, Ronald (Committee member) / Lopez, Juan (Committee member) / Arizona State University (Publisher)
Created2019