Matching Items (3)
Filtering by

Clear all filters

162238-Thumbnail Image.png
DescriptionUnderstanding the evolution of opinions is a delicate task as the dynamics of how one changes their opinion based on their interactions with others are unclear.
ContributorsWeber, Dylan (Author) / Motsch, Sebastien (Thesis advisor) / Lanchier, Nicolas (Committee member) / Platte, Rodrigo (Committee member) / Armbruster, Dieter (Committee member) / Fricks, John (Committee member) / Arizona State University (Publisher)
Created2021
161250-Thumbnail Image.png
Description
Inside cells, axonal and dendritic transport by motor proteins is a process that is responsible for supplying cargo, such as vesicles and organelles, to support neuronal function. Motor proteins achieve transport through a cycle of chemical and mechanical processes. Particle tracking experiments are used to study this intracellular cargo transport

Inside cells, axonal and dendritic transport by motor proteins is a process that is responsible for supplying cargo, such as vesicles and organelles, to support neuronal function. Motor proteins achieve transport through a cycle of chemical and mechanical processes. Particle tracking experiments are used to study this intracellular cargo transport by recording multi-dimensional, discrete cargo position trajectories over time. However, due to experimental limitations, much of the mechanochemical process cannot be directly observed, making mathematical modeling and statistical inference an essential tool for identifying the underlying mechanisms. The cargo movement during transport is modeled using a switching stochastic differential equation framework that involves classification into one of three proposed hidden regimes. Each regime is characterized by different levels of velocity and stochasticity. The equations are presented as a state-space model with Markovian properties. Through a stochastic expectation-maximization algorithm, statistical inference can be made based on the observed trajectory. Regime predictions and particle location predictions are calculated through an auxiliary particle filter and particle smoother. Based on these predictions, parameters are estimated through maximum likelihood. Diagnostics are proposed that can assess model performance and therefore also be a form of model selection criteria. Model selection is used to find the most accurate regime models and the optimal number of regimes for a certain motor-cargo system. A method for incorporating a second positional dimension is also introduced. These methods are tested on both simulated data and different types of experimental data.
ContributorsCrow, Lauren (Author) / Fricks, John (Thesis advisor) / McKinley, Scott (Committee member) / Hahn, Paul R (Committee member) / Reiser, Mark (Committee member) / Cheng, Dan (Committee member) / Arizona State University (Publisher)
Created2021
132421-Thumbnail Image.png
Description
The objective of this paper is to find and describe trends in the fast Fourier transformed accelerometer data that can be used to predict the mechanical failure of large vacuum pumps used in industrial settings, such as providing drinking water. Using three-dimensional plots of the data, this paper suggests how

The objective of this paper is to find and describe trends in the fast Fourier transformed accelerometer data that can be used to predict the mechanical failure of large vacuum pumps used in industrial settings, such as providing drinking water. Using three-dimensional plots of the data, this paper suggests how a model can be developed to predict the mechanical failure of vacuum pumps.
ContributorsHalver, Grant (Author) / Taylor, Tom (Thesis director) / Konstantinos, Tsakalis (Committee member) / Fricks, John (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05