Matching Items (23)
Filtering by

Clear all filters

150208-Thumbnail Image.png
Description
Pulse Density Modulation- (PDM-) based class-D amplifiers can reduce non-linearity and tonal content due to carrier signal in Pulse Width Modulation - (PWM-) based amplifiers. However, their low-voltage analog implementations also require a linear- loop filter and a quantizer. A PDM-based class-D audio amplifier using a frequency-domain quantization is presented

Pulse Density Modulation- (PDM-) based class-D amplifiers can reduce non-linearity and tonal content due to carrier signal in Pulse Width Modulation - (PWM-) based amplifiers. However, their low-voltage analog implementations also require a linear- loop filter and a quantizer. A PDM-based class-D audio amplifier using a frequency-domain quantization is presented in this paper. The digital-intensive frequency domain approach achieves high linearity under low-supply regimes. An analog comparator and a single-bit quantizer are replaced with a Current-Controlled Oscillator- (ICO-) based frequency discriminator. By using the ICO as a phase integrator, a third-order noise shaping is achieved using only two analog integrators. A single-loop, singlebit class-D audio amplifier is presented with an H-bridge switching power stage, which is designed and fabricated on a 0.18 um CMOS process, with 6 layers of metal achieving a total harmonic distortion plus noise (THD+N) of 0.065% and a peak power efficiency of 80% while driving a 4-ohms loudspeaker load. The amplifier can deliver the output power of 280 mW.
ContributorsLee, Junghan (Author) / Bakkaloglu, Bertan (Thesis advisor) / Kiaei, Sayfe (Committee member) / Ozev, Sule (Committee member) / Song, Hongjiang (Committee member) / Arizona State University (Publisher)
Created2011
150241-Thumbnail Image.png
Description
ABSTRACT To meet stringent market demands, manufacturers must produce Radio Frequency (RF) transceivers that provide wireless communication between electronic components used in consumer products at extremely low cost. Semiconductor manufacturers are in a steady race to increase integration levels through advanced system-on-chip (SoC) technology. The testing costs of these devices

ABSTRACT To meet stringent market demands, manufacturers must produce Radio Frequency (RF) transceivers that provide wireless communication between electronic components used in consumer products at extremely low cost. Semiconductor manufacturers are in a steady race to increase integration levels through advanced system-on-chip (SoC) technology. The testing costs of these devices tend to increase with higher integration levels. As the integration levels increase and the devices get faster, the need for high-calibre low cost test equipment become highly dominant. However testing the overall system becomes harder and more expensive. Traditionally, the transceiver system is tested in two steps utilizing high-calibre RF instrumentation and mixed-signal testers, with separate measurement setups for transmitter and receiver paths. Impairments in the RF front-end, such as the I/Q gain and phase imbalance and nonlinearity, severely affect the performance of the device. The transceiver needs to be characterized in terms of these impairments in order to guarantee good performance and specification requirements. The motivation factor for this thesis is to come up with a low cost and computationally simple extraction technique of these impairments. In the proposed extraction technique, the mapping between transmitter input signals and receiver output signals are used to extract the impairment and nonlinearity parameters. This is done with the help of detailed mathematical modeling of the transceiver. While the overall behavior is nonlinear, both linear and nonlinear models to be used under different test setups are developed. A two step extraction technique has been proposed in this work. The extraction of system parameters is performed by using the mathematical model developed along with a genetic algorithm implemented in MATLAB. The technique yields good extraction results with reasonable error. It uses simple mathematical operation which makes the extraction fast and computationally simple when compared to other existing techniques such as traditional two step dedicated approach, Nonlinear Solver (NLS) approach, etc. It employs frequency domain analysis of low frequency input and output signals, over cumbersome time domain computations. Thus a test method, including detailed behavioral modeling of the transceiver, appropriate test signal design along with a simple algorithm for extraction is presented.
ContributorsSreenivassan, Aiswariya (Author) / Ozev, Sule (Thesis advisor) / Kiaei, Sayfe (Committee member) / Bakkaloglu, Bertan (Committee member) / Arizona State University (Publisher)
Created2011
151052-Thumbnail Image.png
Description
From the instructional perspective, the scope of "active learning" in the literature is very broad and includes all sorts of classroom activities that engage students with the learning experience. However, classifying all classroom activities as a mode of "active learning" simply ignores the unique cognitive processes associated with the type

From the instructional perspective, the scope of "active learning" in the literature is very broad and includes all sorts of classroom activities that engage students with the learning experience. However, classifying all classroom activities as a mode of "active learning" simply ignores the unique cognitive processes associated with the type of activity. The lack of an extensive framework and taxonomy regarding the relative effectiveness of these "active" activities makes it difficult to compare and contrast the value of conditions in different studies in terms of student learning. Recently, Chi (2009) proposed a framework of differentiated overt learning activities (DOLA) as active, constructive, and interactive based on their underlying cognitive principles and their effectiveness on students' learning outcomes. The motivating question behind this framework is whether some types of engagement affect learning outcomes more than the others. This work evaluated the effectiveness and applicability of the DOLA framework to learning activities for STEM classes. After classification of overt learning activities as being active, constructive or interactive, I then tested the ICAP hypothesis, which states that student learning is more effective in interactive activities than constructive activities, which are more effective than active activities, which are more effective than passive activities. I conducted two studies (Study 1 and Study 2) to determine how and to what degree differentiated activities affected students' learning outcomes. For both studies, I measured students' knowledge of materials science and engineering concepts. Results for Study 1 showed that students scored higher on all post-class quiz questions after participating in interactive and constructive activities than after the active activities. However, student scores on more difficult, inference questions suggested that interactive activities provided significantly deeper learning than either constructive or active activities. Results for Study 2 showed that students' learning, in terms of gain scores, increased systematically from passive to active to constructive to interactive, as predicted by ICAP. All the increases, from condition to condition, were significant. Verbal analysis of the students' dialogue in interactive condition indicated a strong correlation between the co-construction of knowledge and learning gains. When the statements and responses of each student build upon those of the other, both students benefit from the collaboration. Also, the linear combination of discourse moves was significantly related to the adjusted gain scores with a very high correlation coefficient. Specifically, the elaborate type discourse moves were positively correlated with learning outcomes; whereas the accept type moves were negatively correlated with learning outcomes. Analyses of authentic activities in a STEM classroom showed that they fit within the taxonomy of the DOLA framework. The results of the two studies provided evidence to support the predictions of the ICAP hypothesis.
ContributorsMenekşe, Muhsin (Author) / Chi, Michelene T.H. (Thesis advisor) / Baker, Dale (Committee member) / Middleton, James (Committee member) / Arizona State University (Publisher)
Created2012
154014-Thumbnail Image.png
Description
Biosensors aiming at detection of target analytes, such as proteins, microbes, virus, and toxins, are widely needed for various applications including detection of chemical and biological warfare (CBW) agents, biomedicine, environmental monitoring, and drug screening. Surface Plasmon Resonance (SPR), as a surface-sensitive analytical tool, can very sensitively respond to minute

Biosensors aiming at detection of target analytes, such as proteins, microbes, virus, and toxins, are widely needed for various applications including detection of chemical and biological warfare (CBW) agents, biomedicine, environmental monitoring, and drug screening. Surface Plasmon Resonance (SPR), as a surface-sensitive analytical tool, can very sensitively respond to minute changes of refractive index occurring adjacent to a metal film, offering detection limits up to a few ppt (pg/mL). Through SPR, the process of protein adsorption may be monitored in real-time, and transduced into an SPR angle shift. This unique technique bypasses the time-consuming, labor-intensive labeling processes, such as radioisotope and fluorescence labeling. More importantly, the method avoids the modification of the biomarker’s characteristics and behaviors by labeling that often occurs in traditional biosensors. While many transducers, including SPR, offer high sensitivity, selectivity is determined by the bio-receptors. In traditional biosensors, the selectivity is provided by bio-receptors possessing highly specific binding affinity to capture target analytes, yet their use in biosensors are often limited by their relatively-weak binding affinity with analyte, non-specific adsorption, need for optimization conditions, low reproducibility, and difficulties integrating onto the surface of transducers. In order to circumvent the use of bio-receptors, the competitive adsorption of proteins, termed the Vroman effect, is utilized in this work. The Vroman effect was first reported by Vroman and Adams in 1969. The competitive adsorption targeted here occurs among different proteins competing to adsorb to a surface, when more than one type of protein is present. When lower-affinity proteins are adsorbed on the surface first, they can be displaced by higher-affinity proteins arriving at the surface at a later point in time. Moreover, only low-affinity proteins can be displaced by high-affinity proteins, typically possessing higher molecular weight, yet the reverse sequence does not occur. The SPR biosensor based on competitive adsorption is successfully demonstrated to detect fibrinogen and thyroglobulin (Tg) in undiluted human serum and copper ions in drinking water through the denatured albumin.
ContributorsWang, Ran (Author) / Chae, Junseok (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Tsow, Tsing (Committee member) / Goryll, Michael (Committee member) / Arizona State University (Publisher)
Created2015
156327-Thumbnail Image.png
Description
Energy production is driven by economic needs, which sometimes results in the environment and wildlife being an afterthought. Unfortunately, many animals are killed as a result of flying too close to wind turbines, and the addition of animal deterrent devices are a promising alternative. This thesis seeks to provide a

Energy production is driven by economic needs, which sometimes results in the environment and wildlife being an afterthought. Unfortunately, many animals are killed as a result of flying too close to wind turbines, and the addition of animal deterrent devices are a promising alternative. This thesis seeks to provide a solution as a part of post- construction considerations regarding wildlife and wind turbine interactions through the introduction of a blade mounted ecological device. After testing the hypothesis, the data revealed the device is effective for increasing power output when placed at the root, middle, and tip of the blade. The middle position yielded the lowest increase at all speeds tested. The device was designed and attached to blades along the estimated line of separation. The blades were then mounted on a tower and tested with wind speed as an input and power as an output. The data was analyzed by fixing speed as a parameter and then looking at the distribution of the power output data. A comparison of blades with and without the device demonstrates a potential for increasing power output by 144% when the device is attached at the blade’s root, 7.5% in the middle, and 21% near the tip. The analysis for this study was descoped due to the constraints of the system to be scaled up. As such, this analysis will hold for turbines with a blade length of no more than approximately eight feet. Blades of this type would be used in single building energy grid supplement turbines or turbines in areas with power requirements of equal or less than 1kW per turbine installed. Single building energy grid supplement turbines are most often mounted to the tops of buildings and take advantage of higher speeds of wind at those heights. As the ecological devices are designed to be similar to vortex generators, which have been tested on large blades, their addition to large blades could prove to have a similar effect.

Keywords: Wind turbine ecosystem, post-construction turbine considerations, wildlife deterrents
ContributorsBooth, Stephanie (Author) / Trimble, Steve (Thesis advisor) / Middleton, James (Thesis advisor) / Huang, Huei-Ping (Committee member) / Arizona State University (Publisher)
Created2018
156222-Thumbnail Image.png
Description
The increase in computing power has simultaneously increased the demand for input/output (I/O) bandwidth. Unfortunately, the speed of I/O and memory interconnects have not kept pace. Thus, processor-based systems are I/O and interconnect limited. The memory aggregated bandwidth is not scaling fast enough to keep up with increasing bandwidth demands.

The increase in computing power has simultaneously increased the demand for input/output (I/O) bandwidth. Unfortunately, the speed of I/O and memory interconnects have not kept pace. Thus, processor-based systems are I/O and interconnect limited. The memory aggregated bandwidth is not scaling fast enough to keep up with increasing bandwidth demands. The term "memory wall" has been coined to describe this phenomenon.

A new memory bus concept that has the potential to push double data rate (DDR) memory speed to 30 Gbit/s is presented. We propose to map the conventional DDR bus to a microwave link using a multicarrier frequency division multiplexing scheme. The memory bus is formed using a microwave signal carried within a waveguide. We call this approach multicarrier memory channel architecture (MCMCA). In MCMCA, each memory signal is modulated onto an RF carrier using 64-QAM format or higher. The carriers are then routed using substrate integrated waveguide (SIW) interconnects. At the receiver, the memory signals are demodulated and then delivered to SDRAM devices. We pioneered the usage of SIW as memory channel interconnects and demonstrated that it alleviates the memory bandwidth bottleneck. We demonstrated SIW performance superiority over conventional transmission line in immunity to cross-talk and electromagnetic interference. We developed a methodology based on design of experiment (DOE) and response surface method techniques that optimizes the design of SIW interconnects and minimizes its performance fluctuations under material and manufacturing variations. Along with using SIW, we implemented a multicarrier architecture which enabled the aggregated DDR bandwidth to reach 30 Gbit/s. We developed an end-to-end system model in Simulink and demonstrated the MCMCA performance for ultra-high throughput memory channel.

Experimental characterization of the new channel shows that by using judicious frequency division multiplexing, as few as one SIW interconnect is sufficient to transmit the 64 DDR bits. Overall aggregated bus data rate achieves 240 GBytes/s data transfer with EVM not exceeding 2.26% and phase error of 1.07 degree or less.
ContributorsBensalem, Brahim (Author) / Aberle, James T. (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Tirkas, Panayiotis A. (Committee member) / Kitchen, Jennifer (Committee member) / Arizona State University (Publisher)
Created2018
157182-Thumbnail Image.png
Description
There is an ever-increasing demand for higher bandwidth and data rate ensuing from exploding number of radio frequency integrated systems and devices. As stated in the Shannon-Hartley theorem, the maximum achievable data rate of a communication channel is linearly proportional to the system bandwidth. This is the main driving force

There is an ever-increasing demand for higher bandwidth and data rate ensuing from exploding number of radio frequency integrated systems and devices. As stated in the Shannon-Hartley theorem, the maximum achievable data rate of a communication channel is linearly proportional to the system bandwidth. This is the main driving force behind pushing wireless systems towards millimeter-wave frequency range, where larger bandwidth is available at a higher carrier frequency. Observing the Moor’s law, highly scaled complementary metal–oxide–semiconductor (CMOS) technologies provide fast transistors with a high unity power gain frequency which enables operating at millimeter-wave frequency range. CMOS is the compelling choice for digital and signal processing modules which concurrently offers high computation speed, low power consumption, and mass integration at a high manufacturing yield. One of the main shortcomings of the sub-micron CMOS technologies is the low breakdown voltage of the transistors that limits the dynamic range of the radio frequency (RF) power blocks, especially with the power amplifiers. Low voltage swing restricts the achievable output power which translates into low signal to noise ratio and degraded linearity. Extensive research has been done on proposing new design and IC fabrication techniques with the goal of generating higher output power in CMOS technology. The prominent drawbacks of these solutions are an increased die area, higher cost per design, and lower overall efficiency due to lossy passive components. In this dissertation, CMOS compatible metal–semiconductor field-effect transistor (MESFETs) are utilized to put forward a new solution to enhance the power amplifier’s breakdown voltage, gain and maximum output power. Requiring no change to the conventional CMOS process flow, this low cost approach allows direct incorporation of high voltage power MESFETs into silicon. High voltage MESFETs were employed in a cascode structure to push the amplifier’s cutoff frequency and unity power gain frequency to the 5G and K-band frequency range. This dissertation begins with CMOS compatible MESFET modeling and fabrication steps, and culminates in the discussion of amplifier design and optimization methodology, parasitic de-embedding steps, simulation and measurement results, and high resistivity RF substrate characterization.
ContributorsHabibiMehr, Payam (Author) / Thornton, Trevor John (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Formicone, Gabriele (Committee member) / Kitchen, Jennifer (Committee member) / Arizona State University (Publisher)
Created2019
135856-Thumbnail Image.png
Description
The flipped classroom is a teaching method that flips the activities done in and out of class, i.e., concepts are learned out of class and problems are worked in class under the supervision of the instructor. Studies have indicated several benefits of the FC, including improved performance and engagement. In

The flipped classroom is a teaching method that flips the activities done in and out of class, i.e., concepts are learned out of class and problems are worked in class under the supervision of the instructor. Studies have indicated several benefits of the FC, including improved performance and engagement. In the past years, further studies have investigated the benefits of FC in statics, dynamics, and mechanics of materials courses and indicate similar performance benefits. However, these studies address a need for additional studies to validate their results due to the short length of their research or small classroom size. In addition, many of these studies do not measure student attitudes, such as self-efficacy, or the difference in time spent out of class on coursework. The objective of this research is to determine the effectiveness of the flipped classroom system (FC) in comparison to the traditional classroom system (TC) in a large mechanics of materials course. Specifically, it aims to measure student performance, student self-efficacy, student attitudes on lecture quality, motivation, attendance, hours spent out of class, practice, and support, and difference in impact between high, middle, and low achieving students. In order to accomplish this, three undergraduate mechanics of materials courses were analyzed during the spring 2015 semester. One FC section served as the experimental group (92 students), while the two TC sections served as the control group (125 students). To analyze student self-efficacy and attitudes, a survey instrument was designed to measure 18 variables and was administered at the end of the semester. Standardized core outcomes were compared between groups to analyze performance. This paper presents the specific course framework used in this FC, detailed results of the quantitative and qualitative analysis, and discussion of strengths and weaknesses. Overall, an overwhelming majority of students were satisfied with FC and would like more of their classes taught using FC. Strengths of this teaching method include greater confidence, better focus, higher satisfaction with practice in class and assistance received from instructors and peers, more freedom to express ideas and questions in class, and less time required outside of class for coursework. Results also suggest that this method has a greater positive impact on high and low achieving students and leads to higher performance. The criticisms made by students focused on lecture videos to have more worked examples. Overall, results suggest that FC is more effective than TC in a large mechanics of materials course.
ContributorsLee, Andrew Ryan (Author) / Zhu, Haolin (Thesis director) / Middleton, James (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
137184-Thumbnail Image.png
Description
The focus of education in the classroom traditionally is one of fact memorization and recall. The teaching process of linear knowledge progression is not always in tune with the way that the human brain actually processes, conceptualizes, and comprehends concepts and information. In an introductory engineering class, focused on materials

The focus of education in the classroom traditionally is one of fact memorization and recall. The teaching process of linear knowledge progression is not always in tune with the way that the human brain actually processes, conceptualizes, and comprehends concepts and information. In an introductory engineering class, focused on materials engineering and its related concepts, a system of lecture interventions has been put in place to increase concept comprehension by supplementing lecture units with various activities, from additional worksheets, explicit concept discussions, and most recently, YouTube videos showcasing specific concepts and situations. In an attempt to correct the lack of actual concept comprehension, these interventions seek to interact with the human mind in a way that capitalizes on its ability to process and interpret non-linear knowledge and information.

Using a concept test given prior to the lecture unit, and after, the difference in scores is used to recognize if the concepts presented have actually been comprehended. Used specifically in a lecture unit on solubility and solutions, the concept test tested student’s knowledge of supersaturated, saturated, and unsaturated solutions. With a visual identification and a written explanation, the student’s ability to identify and explain the three solutions was tested.

In order to determine the cause of the change in score from pre- to post-test, an analysis of the change in scores and the effects of question type and solution type was conducted. The significant results are as follows:
 The change in score from pre- to post-test was found to be significant, with the only difference between the two tests being the lecture unit and intervention
 From pre- to post-test, solution type had a significant effect on the score, with the unsaturated solution being the most easily recognized and explained solution type
 Students that felt that the YouTube videos greatly increased their concept comprehension, on average, performed better than their counterparts and also saw a greater increase their score from pre- to post-test
ContributorsLinich, Christopher Graham (Author) / Krause, Stephen (Thesis director) / Middleton, James (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2014-05
136994-Thumbnail Image.png
Description
The purpose of this project is to determine the feasibility of a water tunnel designed to meet certain constraints. The project goals are to tailor a design for a given location, and to produce a repeatable design sizing and shape process for specified constraints. The primary design goals include a

The purpose of this project is to determine the feasibility of a water tunnel designed to meet certain constraints. The project goals are to tailor a design for a given location, and to produce a repeatable design sizing and shape process for specified constraints. The primary design goals include a 1 m/s flow velocity in a 30cm x 30cm test section for 300 seconds. Secondary parameters, such as system height, tank height, area contraction ratio, and roof loading limits, may change depending on preference, location, or environment. The final chosen configuration is a gravity fed design with six major components: the reservoir tank, the initial duct, the contraction nozzle, the test section, the exit duct, and the variable control exit nozzle. Important sizing results include a minimum water weight of 60,000 pounds, a system height of 7.65 meters, a system length of 6 meters (not including the reservoir tank), a large shallow reservoir tank width of 12.2 meters, and height of 0.22 meters, and a control nozzle exit radius range of 5.25 cm to 5.3 cm. Computational fluid dynamic simulation further supports adherence to the design constraints but points out some potential areas for improvement in dealing with flow irregularities. These areas include the bends in the ducts, and the contraction nozzle. Despite those areas recommended for improvement, it is reasonable to conclude that the design and process fulfill the project goals.
ContributorsZykan, Brandt Davis Healy (Author) / Wells, Valana (Thesis director) / Middleton, James (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2014-05