Matching Items (6)
Filtering by

Clear all filters

132606-Thumbnail Image.png
Description
Piloerection (known as goosebumps) is mediated by activation of alpha-adrenergic receptors within the sympathetic branch of the autonomic nervous system. The study of piloerection is important in multiple fields, from emotion studies to nervous system pathology. This makes piloerection particularly relevant to emotions research. Despite wide-ranging applications, current methods for

Piloerection (known as goosebumps) is mediated by activation of alpha-adrenergic receptors within the sympathetic branch of the autonomic nervous system. The study of piloerection is important in multiple fields, from emotion studies to nervous system pathology. This makes piloerection particularly relevant to emotions research. Despite wide-ranging applications, current methods for measuring piloerection are laborious and qualitative. The goal of this study is to build a wearable piloerection sensor through the use of straight-line lasers and photoresistors. The study analyzed methods of detecting and measuring goosebumps, and applied the method of laser scattering as a detection method. This device was designed and tested against a population of seven Arizona State University students. Goosebumps were elicited through conditions of cold, and video clips meant to elicit emotions of awe and sadness. Piloerection was then quantified through two controls of self-identification and camera recording, as well as the new detection method. These were then compared together, and it was found that subjective methods of determining goosebumps did not correlate well with objective measurements, but that the two objective measurements correlated well with one another. This shows that the technique of laser scattering can be used to detect goosebumps and further developments on this new detection method will be made. Moreover, the presence of uncorrelated subjective measurements further shows the need for an objective measurement of piloerection, while also bringing into question other factors that may be confused with the feeling of piloerection, such as chills or shivers. This study further reaffirmed previous studies showing a positive correlation between intense emotions.
ContributorsHemesath, Angela (Author) / Muthuswamy, Jitendran (Thesis director) / Shiota, Michelle (Lani) (Committee member) / Harrington Bioengineering Program (Contributor, Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
Description

Our project is to create a simplified, portable, modular electrocardiogram known as ECG/EKG. Most medical facilities, including hospitals, clinics, and skilled nursing facilities, still rely on traditional 12-lead EKG equipment consisting of a large cart with long 10 wires. These wires can be a pain to constantly detangle and rearrange

Our project is to create a simplified, portable, modular electrocardiogram known as ECG/EKG. Most medical facilities, including hospitals, clinics, and skilled nursing facilities, still rely on traditional 12-lead EKG equipment consisting of a large cart with long 10 wires. These wires can be a pain to constantly detangle and rearrange to determine a person’s heart conditions. This creates issues in fast paced scenarios such as when a patient is experiencing a heart attack and needs an EKG stat. Additionally, the current technology can be somewhat unreliable at determining heart conditions, causing providers to request multiple EKG’s for patients. With our improved versatile EKG, we can help solve these issues and implement additional outpatient use with its portable features. This can be done by remotely monitoring heart conditions during activities such as exercise, sleep, or stressful events, without worrying about wire disturbance.

ContributorsLam, Jadon (Author) / Mullins, Hunter (Co-author) / Huang, Hai (Co-author) / Taut, Sarah (Co-author) / Lee, Youngju (Co-author) / Goode, Zachary (Co-author) / Byrne, Jared (Thesis director) / Swader, Melissa (Committee member) / McElfish, Alex (Committee member) / Barrett, The Honors College (Contributor) / Department of Information Systems (Contributor) / Human Systems Engineering (Contributor)
Created2023-05
Description

Our project is to create a simplified, portable, modular electrocardiogram known as ECG/EKG. Most medical facilities, including hospitals, clinics, and skilled nursing facilities, still rely on traditional 12-lead EKG equipment consisting of a large cart with long 10 wires. These wires can be a pain to constantly detangle and rearrange

Our project is to create a simplified, portable, modular electrocardiogram known as ECG/EKG. Most medical facilities, including hospitals, clinics, and skilled nursing facilities, still rely on traditional 12-lead EKG equipment consisting of a large cart with long 10 wires. These wires can be a pain to constantly detangle and rearrange to determine a person’s heart conditions. This creates issues in fast paced scenarios such as when a patient is experiencing a heart attack and needs an EKG stat. Additionally, the current technology can be somewhat unreliable at determining heart conditions, causing providers to request multiple EKG’s for patients. With our improved versatile EKG, we can help solve these issues and implement additional outpatient use with its portable features. This can be done by remotely monitoring heart conditions during activities such as exercise, sleep, or stressful events, without worrying about wire disturbance.

ContributorsMullins, Hunter (Author) / Lam, Jadon (Co-author) / Goode, Zachary (Co-author) / Taut, Sarah (Co-author) / Lee, Youngju (Co-author) / Huang, Hai (Co-author) / Byrne, Jared (Thesis director) / Swader, Melissa (Committee member) / McElfish, Alex (Committee member) / Barrett, The Honors College (Contributor) / Engineering Programs (Contributor)
Created2023-05
Description

Our project is to create a simplified, portable, modular electrocardiogram known as ECG/EKG. Most medical facilities, including hospitals, clinics, and skilled nursing facilities, still rely on traditional 12-lead EKG equipment consisting of a large cart with long 10 wires. These wires can be a pain to constantly detangle and rearrange

Our project is to create a simplified, portable, modular electrocardiogram known as ECG/EKG. Most medical facilities, including hospitals, clinics, and skilled nursing facilities, still rely on traditional 12-lead EKG equipment consisting of a large cart with long 10 wires. These wires can be a pain to constantly detangle and rearrange to determine a person’s heart conditions. This creates issues in fast paced scenarios such as when a patient is experiencing a heart attack and needs an EKG stat. Additionally, the current technology can be somewhat unreliable at determining heart conditions, causing providers to request multiple EKG’s for patients. With our improved versatile EKG, we can help solve these issues and implement additional outpatient use with its portable features. This can be done by remotely monitoring heart conditions during activities such as exercise, sleep, or stressful events, without worrying about wire disturbance.

ContributorsLee, Youngju (Author) / Taut, Sarah (Co-author) / Goode, Zachary (Co-author) / Lam, Jadon (Co-author) / Huang, Hai (Co-author) / Mullins, Hunter (Co-author) / Byrne, Jared (Thesis director) / Swader, Melissa (Committee member) / McElfish, Alex (Committee member) / Barrett, The Honors College (Contributor) / Department of Management and Entrepreneurship (Contributor) / Dean, W.P. Carey School of Business (Contributor)
Created2023-05
Description

Our project is to create a simplified, portable, modular electrocardiogram known as ECG/EKG. Most medical facilities, including hospitals, clinics, and skilled nursing facilities, still rely on traditional 12-lead EKG equipment consisting of a large cart with long 10 wires. These wires can be a pain to constantly detangle and rearrange

Our project is to create a simplified, portable, modular electrocardiogram known as ECG/EKG. Most medical facilities, including hospitals, clinics, and skilled nursing facilities, still rely on traditional 12-lead EKG equipment consisting of a large cart with long 10 wires. These wires can be a pain to constantly detangle and rearrange to determine a person’s heart conditions. This creates issues in fast paced scenarios such as when a patient is experiencing a heart attack and needs an EKG stat. Additionally, the current technology can be somewhat unreliable at determining heart conditions, causing providers to request multiple EKG’s for patients. With our improved versatile EKG, we can help solve these issues and implement additional outpatient use with its portable features. This can be done by remotely monitoring heart conditions during activities such as exercise, sleep, or stressful events, without worrying about wire disturbance.

ContributorsGoode, Zachary (Author) / Huang, Hai (Co-author) / Lam, Jadon (Co-author) / Lee, Youngju (Co-author) / Taut, Sarah (Co-author) / Mullins, Hunter (Co-author) / Byrne, Jared (Thesis director) / Swader, Melissa (Committee member) / Barrett, The Honors College (Contributor) / Engineering Programs (Contributor) / School of Manufacturing Systems and Networks (Contributor)
Created2023-05
Description

Our project is to create a simplified, portable, modular electrocardiogram known as ECG/EKG. Most medical facilities, including hospitals, clinics, and skilled nursing facilities, still rely on traditional 12-lead EKG equipment consisting of a large cart with long 10 wires. These wires can be a pain to constantly detangle and rearrange

Our project is to create a simplified, portable, modular electrocardiogram known as ECG/EKG. Most medical facilities, including hospitals, clinics, and skilled nursing facilities, still rely on traditional 12-lead EKG equipment consisting of a large cart with long 10 wires. These wires can be a pain to constantly detangle and rearrange to determine a person’s heart conditions. This creates issues in fast paced scenarios such as when a patient is experiencing a heart attack and needs an EKG stat. Additionally, the current technology can be somewhat unreliable at determining heart conditions, causing providers to request multiple EKG’s for patients. With our improved versatile EKG, we can help solve these issues and implement additional outpatient use with its portable features. This can be done by remotely monitoring heart conditions during activities such as exercise, sleep, or stressful events, without worrying about wire disturbance.

ContributorsHuang, Hai (Author) / Mullins, Hunter (Co-author) / Lam, Jadon (Co-author) / Taut, Sarah (Co-author) / Goode, Zachary (Co-author) / Lee, Youngju (Co-author) / Byrne, Jared (Thesis director) / Swader, Melissa (Committee member) / McElfish, Alex (Committee member) / Barrett, The Honors College (Contributor) / Department of Information Systems (Contributor) / Department of Supply Chain Management (Contributor)
Created2023-05