Matching Items (3)
Filtering by

Clear all filters

134361-Thumbnail Image.png
Description

Based on findings of previous studies, there was speculation that two well-known experimental design software packages, JMP and Design Expert, produced varying power outputs given the same design and user inputs. For context and scope, another popular experimental design software package, Minitab® Statistical Software version 17, was added to the

Based on findings of previous studies, there was speculation that two well-known experimental design software packages, JMP and Design Expert, produced varying power outputs given the same design and user inputs. For context and scope, another popular experimental design software package, Minitab® Statistical Software version 17, was added to the comparison. The study compared multiple test cases run on the three software packages with a focus on 2k and 3K factorial design and adjusting the standard deviation effect size, number of categorical factors, levels, number of factors, and replicates. All six cases were run on all three programs and were attempted to be run at one, two, and three replicates each. There was an issue at the one replicate stage, however—Minitab does not allow for only one replicate full factorial designs and Design Expert will not provide power outputs for only one replicate unless there are three or more factors. From the analysis of these results, it was concluded that the differences between JMP 13 and Design Expert 10 were well within the margin of error and likely caused by rounding. The differences between JMP 13, Design Expert 10, and Minitab 17 on the other hand indicated a fundamental difference in the way Minitab addressed power calculation compared to the latest versions of JMP and Design Expert. This was found to be likely a cause of Minitab’s dummy variable coding as its default instead of the orthogonal coding default of the other two. Although dummy variable and orthogonal coding for factorial designs do not show a difference in results, the methods affect the overall power calculations. All three programs can be adjusted to use either method of coding, but the exact instructions for how are difficult to find and thus a follow-up guide on changing the coding for factorial variables would improve this issue.

ContributorsArmstrong, Julia Robin (Author) / McCarville, Daniel R. (Thesis director) / Montgomery, Douglas (Committee member) / Industrial, Systems (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
131553-Thumbnail Image.png
Description

Accessible STEAM (Science, Technology, Engineering, Art, and Mathematics) education is imperative in creating the future innovators of the world. This business proposal is for a K-8 STEAM Museum to be built in the Novus Innovation Corridor on Arizona State University (ASU)’s Tempe campus. The museum will host dynamic spaces that

Accessible STEAM (Science, Technology, Engineering, Art, and Mathematics) education is imperative in creating the future innovators of the world. This business proposal is for a K-8 STEAM Museum to be built in the Novus Innovation Corridor on Arizona State University (ASU)’s Tempe campus. The museum will host dynamic spaces that are constantly growing and evolving as exhibits are built by interdisciplinary capstone student groups- creating an internal capstone project pipeline. The intention of the museum is to create an interactive environment that fosters curiosity and creativity while acting as supplemental learning material to Arizona K-8 curriculum. The space intends to serve the greater Phoenix area community and will cater to underrepresented audiences through the development of accessible education rooted in equality and inclusivity.

ContributorsPeters, Abigail J (Author) / McCarville, Daniel R. (Thesis director) / Juarez, Joseph (Committee member) / Industrial, Systems & Operations Engineering Prgm (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131563-Thumbnail Image.png
Description

Technology has managed to seamlessly grow into every industry fathomable without much resistance. This could be due to the fact that the majority of industries that have integrated technology have lacked insurmountable barriers which could hold back strategic innovations. Even with a wide array of industries applying technology to their

Technology has managed to seamlessly grow into every industry fathomable without much resistance. This could be due to the fact that the majority of industries that have integrated technology have lacked insurmountable barriers which could hold back strategic innovations. Even with a wide array of industries applying technology to their framework, some haven’t managed to reach the true capability of technological advances. One industry that has both taken wide advantage of technology while also barely scraping the surface of the depth behind its potential has been politics. Electronic voting booths, targeted online marketing campaigns, and live streamed debates have been integral parts of our modern-day political environment, however, approval rating-based forecasting for elections has been an area that isn’t commonly referenced by both large political players.

In an age of information where data can be extracted just about anywhere and interpolated using extensive statistical processing, the fact that systems modeling isn’t a pillar of campaign efforts seems ludicrous. A field that is heavily dependent on pivoting concern based on lack of support would make sense to heavily depend on a modeling system that can accurately predict future points of interest.
This report aims to lay the foundation that can be built upon through providing pitfalls in potential modeling, importance of a modeling system, and a barebones skeleton model in AnyLogic with a scheme of how the model would work. I hope this report can serve political interests by providing context on which modeling can accurately provide insight.

ContributorsSchiazzano, John (Author) / McCarville, Daniel R. (Thesis director) / Juarez, Joseph (Committee member) / Industrial, Systems & Operations Engineering Prgm (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05