Matching Items (49)
Filtering by

Clear all filters

149709-Thumbnail Image.png
Description
The price based marketplace has dominated the construction industry. The majority of owners use price based practices of management (expectation and decision making, control, direction, and inspection.) The price based/management and control paradigm has not worked. Clients have now been moving toward the best value environment (hire

The price based marketplace has dominated the construction industry. The majority of owners use price based practices of management (expectation and decision making, control, direction, and inspection.) The price based/management and control paradigm has not worked. Clients have now been moving toward the best value environment (hire contractors who know what they are doing, who preplan, and manage and minimize risk and deviation.) Owners are trying to move from client direction and control to hiring an expert and allowing them to do the quality control/risk management. The movement of environments changes the paradigm for the contractors from a reactive to a proactive, from a bureaucratic
on-accountable to an accountable position, from a relationship based
on-measuring to a measuring entity, and to a contractor who manages and minimizes the risk that they do not control. Years of price based practices have caused poor quality and low performance in the construction industry. This research identifies what is a best value contractor or vendor, what factors make up a best value vendor, and the methodology to transform a vendor to a best value vendor. It will use deductive logic, a case study to confirm the logic and the proposed methodology.
ContributorsPauli, Michele (Author) / Kashiwagi, Dean (Thesis advisor) / Sullivan, Kenneth (Committee member) / Badger, William (Committee member) / Arizona State University (Publisher)
Created2011
150372-Thumbnail Image.png
Description
As global competition continues to grow more disruptive, organizational change is an ever-present reality that affects companies in all industries at both the operational and strategic level. Organizational change capabilities have become a necessary aspect of existence for organizations in all industries worldwide. Research suggests that more than half of

As global competition continues to grow more disruptive, organizational change is an ever-present reality that affects companies in all industries at both the operational and strategic level. Organizational change capabilities have become a necessary aspect of existence for organizations in all industries worldwide. Research suggests that more than half of all organizational change efforts fail to achieve their original intended results, with some studies quoting failure rates as high as 70 percent. Exasperating this problem is the fact that no single change methodology has been universally accepted. This thesis examines two aspect of organizational change: the implementation of tactical and strategic initiatives, primarily focusing on successful tactical implementation techniques. This research proposed that tactical issues typically dominate the focus of change agents and recipients alike, often to the detriment of strategic level initiatives that are vital to the overall value and success of the organizational change effort. The Delphi method was employed to develop a tool to facilitate the initial implementation of organizational change such that tactical barriers were minimized and available resources for strategic initiatives were maximized. Feedback from two expert groups of change agents and change facilitators was solicited to develop the tool and evaluate its impact. Preliminary pilot testing of the tool confirmed the proposal and successfully served to minimize tactical barriers to organizational change.
ContributorsLines, Brian (Author) / Sullivan, Kenneth T. (Thesis advisor) / Badger, William (Committee member) / Kashiwagi, Dean (Committee member) / Arizona State University (Publisher)
Created2011
150094-Thumbnail Image.png
Description
The high penetration of photovoltaic (PV) both at the utility and at the distribu-tion levels, has raised concerns about the reliability of grid-tied inverters of PV power systems. Inverters are generally considered as the weak link in PV power systems. The lack of a dedicated qualification/reliability standard for PV inverters

The high penetration of photovoltaic (PV) both at the utility and at the distribu-tion levels, has raised concerns about the reliability of grid-tied inverters of PV power systems. Inverters are generally considered as the weak link in PV power systems. The lack of a dedicated qualification/reliability standard for PV inverters is a main barrier in realizing higher level of confidence in reliability. Development of a well-accepted design qualification standard specifically for PV inverters will help pave the way for significant improvement in reliability and performance of inverters across the entire industry. The existing standards for PV inverters such as UL 1741 and IEC 62109-1 primarily focus on safety. IEC 62093 discusses inverter qualification but it includes all the balance of sys-tem components and therefore not specific to PV inverters. There are other general stan-dards for distributed generators including the IEEE1547 series of standards which cover major concerns like utility integration but they are not dedicated to PV inverters and are not written from a design qualification point of view. In this thesis, some of the potential requirements for a design qualification standard for PV inverters are addressed. The IEC 62093 is considered as a guideline and the possible inclusions in the framework for a dedicated design qualification standard of PV inverter are discussed. The missing links in existing PV inverter related standards are identified by performing gap analysis. Dif-ferent requirements of small residential inverters compared to large utility-scale systems, and the emerging requirements on grid support features are also considered. Electric stress test is found to be the key missing link and one of the electric stress tests, the surge withstand test is studied in detail. The use of the existing standards for surge withstand test of residential scale PV inverters is investigated and a method to suitably adopt these standards is proposed. The proposed method is studied analytically and verified using simulation. A design criterion for choosing the switch ratings of the inverter that can per-form reliably under the surge environment is derived.
ContributorsAlampoondi Venkataramanan, Sai Balasubramanian (Author) / Ayyanar, Raja (Thesis advisor) / Vittal, Vijay (Committee member) / Heydt, Gerald (Committee member) / Arizona State University (Publisher)
Created2011
150133-Thumbnail Image.png
Description
ABSTRACT Facility managers have an important job in today's competitive business world by caring for the backbone of the corporation's capital. Maintaining assets and the support efforts cause facility managers to fight an uphill battle to prove the worth of their organizations. This thesis will discuss the important and flexible

ABSTRACT Facility managers have an important job in today's competitive business world by caring for the backbone of the corporation's capital. Maintaining assets and the support efforts cause facility managers to fight an uphill battle to prove the worth of their organizations. This thesis will discuss the important and flexible use of measurement and leadership reports and the benefits of justifying the work required to maintain or upgrade a facility. The task is streamlined by invoking accountability to subject experts. The facility manager must trust in the ability of his or her work force to get the job done. However, with accountability comes increased risk. Even though accountability may not alleviate total control or cease reactionary actions, facility managers can develop key leadership based reports to reassign accountability and measure subject matter experts while simultaneously reducing reactionary actions leading to increased cost. Identifying and reassigning risk that are not controlled to subject matter experts is imperative for effective facility management leadership and allows facility managers to create an accurate and solid facility management plan, supports the organization's succession plan, and allows the organization to focus on key competencies.
ContributorsTellefsen, Thor (Author) / Sullivan, Kenneth (Thesis advisor) / Kashiwagi, Dean (Committee member) / Badger, William (Committee member) / Arizona State University (Publisher)
Created2011
152321-Thumbnail Image.png
Description
In modern electric power systems, energy management systems (EMSs) are responsi-ble for monitoring and controlling the generation system and transmission networks. State estimation (SE) is a critical `must run successful' component within the EMS software. This is dictated by the high reliability requirements and need to represent the closest real

In modern electric power systems, energy management systems (EMSs) are responsi-ble for monitoring and controlling the generation system and transmission networks. State estimation (SE) is a critical `must run successful' component within the EMS software. This is dictated by the high reliability requirements and need to represent the closest real time model for market operations and other critical analysis functions in the EMS. Tradi-tionally, SE is run with data obtained only from supervisory control and data acquisition (SCADA) devices and systems. However, more emphasis on improving the performance of SE drives the inclusion of phasor measurement units (PMUs) into SE input data. PMU measurements are claimed to be more accurate than conventional measurements and PMUs `time stamp' measurements accurately. These widely distributed devices meas-ure the voltage phasors directly. That is, phase information for measured voltages and currents are available. PMUs provide data time stamps to synchronize measurements. Con-sidering the relatively small number of PMUs installed in contemporary power systems in North America, performing SE with only phasor measurements is not feasible. Thus a hy-brid SE, including both SCADA and PMU measurements, is the reality for contemporary power system SE. The hybrid approach is the focus of a number of research papers. There are many practical challenges in incorporating PMUs into SE input data. The higher reporting rates of PMUs as compared with SCADA measurements is one of the salient problems. The disparity of reporting rates raises a question whether buffering the phasor measurements helps to give better estimates of the states. The research presented in this thesis addresses the design of data buffers for PMU data as used in SE applications in electric power systems. The system theoretic analysis is illustrated using an operating electric power system in the southwest part of the USA. Var-ious instances of state estimation data have been used for analysis purposes. The details of the research, results obtained and conclusions drawn are presented in this document.
ContributorsMurugesan, Veerakumar (Author) / Vittal, Vijay (Committee member) / Heydt, Gerald (Committee member) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2013
152326-Thumbnail Image.png
Description
Solar power generation is the most promising technology to transfer energy consumption reliance from fossil fuel to renewable sources. Concentrated solar power generation is a method to concentrate the sunlight from a bigger area to a smaller area. The collected sunlight is converted more efficiently through two types of technologies:

Solar power generation is the most promising technology to transfer energy consumption reliance from fossil fuel to renewable sources. Concentrated solar power generation is a method to concentrate the sunlight from a bigger area to a smaller area. The collected sunlight is converted more efficiently through two types of technologies: concentrated solar photovoltaics (CSPV) and concentrated solar thermal power (CSTP) generation. In this thesis, these two technologies were evaluated in terms of system construction, performance characteristics, design considerations, cost benefit analysis and their field experience. The two concentrated solar power generation systems were implemented with similar solar concentrators and solar tracking systems but with different energy collecting and conversion components: the CSPV system uses high efficiency multi-junction solar cell modules, while the CSTP system uses a boiler -turbine-generator setup. The performances are calibrated via the experiments and evaluation analysis.
ContributorsJin, Zhilei (Author) / Hui, Yu (Thesis advisor) / Ayyanar, Raja (Committee member) / Rodriguez, Armando (Committee member) / Arizona State University (Publisher)
Created2013
152185-Thumbnail Image.png
Description
Over the past couple of decades, quality has been an area of increased focus. Multiple models and approaches have been proposed to measure the quality in the construction industry. This paper focuses on determining the quality of one of the types of roofing systems used in the construction industry, i.e.

Over the past couple of decades, quality has been an area of increased focus. Multiple models and approaches have been proposed to measure the quality in the construction industry. This paper focuses on determining the quality of one of the types of roofing systems used in the construction industry, i.e. Sprayed Polyurethane Foam Roofs (SPF roofs). Thirty seven urethane coated SPF roofs that were installed in 2005 / 2006 were visually inspected to measure the percentage of blisters and repairs three times over a period of 4 year, 6 year and 7 year marks. A repairing criteria was established after a 6 year mark based on the data that were reported to contractors as vulnerable roofs. Furthermore, the relation between four possible contributing time of installation factors i.e. contractor, demographics, season, and difficulty (number of penetrations and size of the roof in square feet) that could affect the quality of the roof was determined. Demographics and difficulty did not affect the quality of the roofs whereas the contractor and the season when the roof was installed did affect the quality of the roofs.
ContributorsGajjar, Dhaval (Author) / Kashiwagi, Dean (Thesis advisor) / Sullivan, Kenneth (Committee member) / Badger, William (Committee member) / Arizona State University (Publisher)
Created2013
151282-Thumbnail Image.png
Description
The goal of this research study was to identify the competencies the Project Manager (PM) will need to respond to the challenges the construction industry faces in 2022 and beyond. The study revealed twenty-one emerging challenges for construction PMs grouped into four primary disruptive forces: workforce demographics, globalization, rapidly evolving

The goal of this research study was to identify the competencies the Project Manager (PM) will need to respond to the challenges the construction industry faces in 2022 and beyond. The study revealed twenty-one emerging challenges for construction PMs grouped into four primary disruptive forces: workforce demographics, globalization, rapidly evolving technology, and changing organizational structures. The future PM will respond to these emerging challenges using a combination of fourteen competencies. The competencies are grouped into four categories: technical (multi-disciplined, practical understanding of technology), management (keen business insight, understanding of project management, knowledge network building, continuous risk monitoring), cognitive (complex decisions making, emotional maturity, effective communication), and leadership (leveraging diverse thinking, building relationships, engaging others, mentoring, building trust). Popular data collection methods used in project management research, such as surveys and interviews, have received criticism about the differences between stated responses to questions, what respondents say they will do, and revealed preferences, what they actually practice in the workplace. Rather than relying on surveys, this research study utilized information generated from games and exercises bundled into one-day training seminars conducted by Construction Industry Institute (CII) companies for current and upcoming generations of PMs. Educational games and exercises provide participants with the opportunity to apply classroom learning and workplace experience to resolve issues presented in real-world scenarios, providing responses that are more closely aligned with the actual decisions and activities occurring on projects. The future competencies were identified by combining results of the literature review with information from the games and exercises through an iterative cycle of data mining, analysis, and consolidation review sessions with CII members. This competency forecast will be used as a basis for company recruiting and to create tools for professional development programs and project management education at the university level. In addition to the competency forecast, the research identified simulation games and exercises as components of a project management development program in a classroom setting. An instrument that links the emerging challenges with the fourteen competencies and learning tools that facilitate the mastering of these competencies has also been developed.
ContributorsKing, Cynthia Joyce (Author) / Wiezel, Avi (Thesis advisor) / Badger, William (Committee member) / Sullivan, Kenneth (Committee member) / Arizona State University (Publisher)
Created2012
150605-Thumbnail Image.png
Description
Human resources have always been the most critical factor in the construction industry, and now, with a historic generation entering the age of retirement, the construction industry needs to place greater effort in preparing for the succession of their most important of human resource, their leaders. A significant body of

Human resources have always been the most critical factor in the construction industry, and now, with a historic generation entering the age of retirement, the construction industry needs to place greater effort in preparing for the succession of their most important of human resource, their leaders. A significant body of research has shown that succession planning minimizes the negative effects that come with leadership transition; however, little research has focused specifically on the construction industry. The majority of construction companies are family owned or have small pools of potential successors, which make them more susceptible to the negative impacts that occur with poor planning for succession. The objective of this research focuses on developing a methodology that will assist construction companies plan and prepare for a leadership transition. Data is gathered from case studies of twelve construction companies that have recently experienced leadership succession. The data is analyzed for practices and characteristics that correlate to successful leadership transitions. Through the findings in the literature review and data analysis of the case studies, the research successfully achieves the objective of developing a potential methodology for increasing the effectiveness of succession planning in a construction company.
ContributorsPerrenoud, Anthony (Author) / Sullivan, Kenneth T. (Thesis advisor) / Badger, William (Committee member) / Schleifer, Thomas (Committee member) / Arizona State University (Publisher)
Created2012
151244-Thumbnail Image.png
Description
The Smart Grid initiative describes the collaborative effort to modernize the U.S. electric power infrastructure. Modernization efforts incorporate digital data and information technology to effectuate control, enhance reliability, encourage small customer sited distributed generation (DG), and better utilize assets. The Smart Grid environment is envisioned to include distributed generation, flexible

The Smart Grid initiative describes the collaborative effort to modernize the U.S. electric power infrastructure. Modernization efforts incorporate digital data and information technology to effectuate control, enhance reliability, encourage small customer sited distributed generation (DG), and better utilize assets. The Smart Grid environment is envisioned to include distributed generation, flexible and controllable loads, bidirectional communications using smart meters and other technologies. Sensory technology may be utilized as a tool that enhances operation including operation of the distribution system. Addressing this point, a distribution system state estimation algorithm is developed in this thesis. The state estimation algorithm developed here utilizes distribution system modeling techniques to calculate a vector of state variables for a given set of measurements. Measurements include active and reactive power flows, voltage and current magnitudes, phasor voltages with magnitude and angle information. The state estimator is envisioned as a tool embedded in distribution substation computers as part of distribution management systems (DMS); the estimator acts as a supervisory layer for a number of applications including automation (DA), energy management, control and switching. The distribution system state estimator is developed in full three-phase detail, and the effect of mutual coupling and single-phase laterals and loads on the solution is calculated. The network model comprises a full three-phase admittance matrix and a subset of equations that relates measurements to system states. Network equations and variables are represented in rectangular form. Thus a linear calculation procedure may be employed. When initialized to the vector of measured quantities and approximated non-metered load values, the calculation procedure is non-iterative. This dissertation presents background information used to develop the state estimation algorithm, considerations for distribution system modeling, and the formulation of the state estimator. Estimator performance for various power system test beds is investigated. Sample applications of the estimator to Smart Grid systems are presented. Applications include monitoring, enabling demand response (DR), voltage unbalance mitigation, and enhancing voltage control. Illustrations of these applications are shown. Also, examples of enhanced reliability and restoration using a sensory based automation infrastructure are shown.
ContributorsHaughton, Daniel Andrew (Author) / Heydt, Gerald T (Thesis advisor) / Vittal, Vijay (Committee member) / Ayyanar, Raja (Committee member) / Hedman, Kory W (Committee member) / Arizona State University (Publisher)
Created2012