Matching Items (27)
Filtering by

Clear all filters

150375-Thumbnail Image.png
Description
Current sensing ability is one of the most desirable features of contemporary current or voltage mode controlled DC-DC converters. Current sensing can be used for over load protection, multi-stage converter load balancing, current-mode control, multi-phase converter current-sharing, load independent control, power efficiency improvement etc. There are handful existing approaches for

Current sensing ability is one of the most desirable features of contemporary current or voltage mode controlled DC-DC converters. Current sensing can be used for over load protection, multi-stage converter load balancing, current-mode control, multi-phase converter current-sharing, load independent control, power efficiency improvement etc. There are handful existing approaches for current sensing such as external resistor sensing, triode mode current mirroring, observer sensing, Hall-Effect sensors, transformers, DC Resistance (DCR) sensing, Gm-C filter sensing etc. However, each method has one or more issues that prevent them from being successfully applied in DC-DC converter, e.g. low accuracy, discontinuous sensing nature, high sensitivity to switching noise, high cost, requirement of known external power filter components, bulky size, etc. In this dissertation, an offset-independent inductor Built-In Self Test (BIST) architecture is proposed which is able to measure the inductor inductance and DCR. The measured DCR enables the proposed continuous, lossless, average current sensing scheme. A digital Voltage Mode Control (VMC) DC-DC buck converter with the inductor BIST and current sensing architecture is designed, fabricated, and experimentally tested. The average measurement errors for inductance, DCR and current sensing are 2.1%, 3.6%, and 1.5% respectively. For the 3.5mm by 3.5mm die area, inductor BIST and current sensing circuits including related pins only consume 5.2% of the die area. BIST mode draws 40mA current for a maximum time period of 200us upon start-up and the continuous current sensing consumes about 400uA quiescent current. This buck converter utilizes an adaptive compensator. It could update compensator internally so that the overall system has a proper loop response for large range inductance and load current. Next, a digital Average Current Mode Control (ACMC) DC-DC buck converter with the proposed average current sensing circuits is designed and tested. To reduce chip area and power consumption, a 9 bits hybrid Digital Pulse Width Modulator (DPWM) which uses a Mixed-mode DLL (MDLL) is also proposed. The DC-DC converter has a maximum of 12V input, 1-11 V output range, and a maximum of 3W output power. The maximum error of one least significant bit (LSB) delay of the proposed DPWM is less than 1%.
ContributorsLiu, Tao (Author) / Bakkaloglu, Bertan (Thesis advisor) / Ozev, Sule (Committee member) / Vermeire, Bert (Committee member) / Cao, Yu (Committee member) / Arizona State University (Publisher)
Created2011
149893-Thumbnail Image.png
Description
Sensing and controlling current flow is a fundamental requirement for many electronic systems, including power management (DC-DC converters and LDOs), battery chargers, electric vehicles, solenoid positioning, motor control, and power monitoring. Current Shunt Monitor (CSM) systems have various applications for precise current monitoring of those aforementioned applications. CSMs enable current

Sensing and controlling current flow is a fundamental requirement for many electronic systems, including power management (DC-DC converters and LDOs), battery chargers, electric vehicles, solenoid positioning, motor control, and power monitoring. Current Shunt Monitor (CSM) systems have various applications for precise current monitoring of those aforementioned applications. CSMs enable current measurement across an external sense resistor (RS) in series to current flow. Two different types of CSMs designed and characterized in this paper. First design used direct current reading method and the other design used indirect current reading method. Proposed CSM systems can sense power supply current ranging from 1mA to 200mA for the direct current reading topology and from 1mA to 500mA for the indirect current reading topology across a typical board Cu-trace resistance of 1 ohm with less than 10 µV input-referred offset, 0.3 µV/°C offset drift and 0.1% accuracy for both topologies. Proposed systems avoid using a costly zero-temperature coefficient (TC) sense resistor that is normally used in typical CSM systems. Instead, both of the designs used existing Cu-trace on the printed circuit board (PCB) in place of the costly resistor. The systems use chopper stabilization at the front-end amplifier signal path to suppress input-referred offset down to less than 10 µV. Switching current-mode (SI) FIR filtering technique is used at the instrumentation amplifier output to filter out the chopping ripple caused by input offset and flicker noise by averaging half of the phase 1 signal and the other half of the phase 2 signal. In addition, residual offset mainly caused by clock feed-through and charge injection of the chopper switches at the chopping frequency and its multiple frequencies notched out by the since response of the SI-FIR filter. A frequency domain Sigma Delta ADC which is used for the indirect current reading type design enables a digital interface to processor applications with minimally added circuitries to build a simple 1st order Sigma Delta ADC. The CSMs are fabricated on a 0.7µm CMOS process with 3 levels of metal, with maximum Vds tolerance of 8V and operates across a common mode range of 0 to 26V for the direct current reading type and of 0 to 30V for the indirect current reading type achieving less than 10nV/sqrtHz of flicker noise at 100 Hz for both approaches. By using a semi-digital SI-FIR filter, residual chopper offset is suppressed down to 0.5mVpp from a baseline of 8mVpp, which is equivalent to 25dB suppression.
ContributorsYeom, Hyunsoo (Author) / Bakkaloglu, Bertan (Thesis advisor) / Kiaei, Sayfe (Committee member) / Ozev, Sule (Committee member) / Yu, Hongyu (Committee member) / Arizona State University (Publisher)
Created2011
150208-Thumbnail Image.png
Description
Pulse Density Modulation- (PDM-) based class-D amplifiers can reduce non-linearity and tonal content due to carrier signal in Pulse Width Modulation - (PWM-) based amplifiers. However, their low-voltage analog implementations also require a linear- loop filter and a quantizer. A PDM-based class-D audio amplifier using a frequency-domain quantization is presented

Pulse Density Modulation- (PDM-) based class-D amplifiers can reduce non-linearity and tonal content due to carrier signal in Pulse Width Modulation - (PWM-) based amplifiers. However, their low-voltage analog implementations also require a linear- loop filter and a quantizer. A PDM-based class-D audio amplifier using a frequency-domain quantization is presented in this paper. The digital-intensive frequency domain approach achieves high linearity under low-supply regimes. An analog comparator and a single-bit quantizer are replaced with a Current-Controlled Oscillator- (ICO-) based frequency discriminator. By using the ICO as a phase integrator, a third-order noise shaping is achieved using only two analog integrators. A single-loop, singlebit class-D audio amplifier is presented with an H-bridge switching power stage, which is designed and fabricated on a 0.18 um CMOS process, with 6 layers of metal achieving a total harmonic distortion plus noise (THD+N) of 0.065% and a peak power efficiency of 80% while driving a 4-ohms loudspeaker load. The amplifier can deliver the output power of 280 mW.
ContributorsLee, Junghan (Author) / Bakkaloglu, Bertan (Thesis advisor) / Kiaei, Sayfe (Committee member) / Ozev, Sule (Committee member) / Song, Hongjiang (Committee member) / Arizona State University (Publisher)
Created2011
150241-Thumbnail Image.png
Description
ABSTRACT To meet stringent market demands, manufacturers must produce Radio Frequency (RF) transceivers that provide wireless communication between electronic components used in consumer products at extremely low cost. Semiconductor manufacturers are in a steady race to increase integration levels through advanced system-on-chip (SoC) technology. The testing costs of these devices

ABSTRACT To meet stringent market demands, manufacturers must produce Radio Frequency (RF) transceivers that provide wireless communication between electronic components used in consumer products at extremely low cost. Semiconductor manufacturers are in a steady race to increase integration levels through advanced system-on-chip (SoC) technology. The testing costs of these devices tend to increase with higher integration levels. As the integration levels increase and the devices get faster, the need for high-calibre low cost test equipment become highly dominant. However testing the overall system becomes harder and more expensive. Traditionally, the transceiver system is tested in two steps utilizing high-calibre RF instrumentation and mixed-signal testers, with separate measurement setups for transmitter and receiver paths. Impairments in the RF front-end, such as the I/Q gain and phase imbalance and nonlinearity, severely affect the performance of the device. The transceiver needs to be characterized in terms of these impairments in order to guarantee good performance and specification requirements. The motivation factor for this thesis is to come up with a low cost and computationally simple extraction technique of these impairments. In the proposed extraction technique, the mapping between transmitter input signals and receiver output signals are used to extract the impairment and nonlinearity parameters. This is done with the help of detailed mathematical modeling of the transceiver. While the overall behavior is nonlinear, both linear and nonlinear models to be used under different test setups are developed. A two step extraction technique has been proposed in this work. The extraction of system parameters is performed by using the mathematical model developed along with a genetic algorithm implemented in MATLAB. The technique yields good extraction results with reasonable error. It uses simple mathematical operation which makes the extraction fast and computationally simple when compared to other existing techniques such as traditional two step dedicated approach, Nonlinear Solver (NLS) approach, etc. It employs frequency domain analysis of low frequency input and output signals, over cumbersome time domain computations. Thus a test method, including detailed behavioral modeling of the transceiver, appropriate test signal design along with a simple algorithm for extraction is presented.
ContributorsSreenivassan, Aiswariya (Author) / Ozev, Sule (Thesis advisor) / Kiaei, Sayfe (Committee member) / Bakkaloglu, Bertan (Committee member) / Arizona State University (Publisher)
Created2011
151804-Thumbnail Image.png
Description
The partially-depleted (PD) silicon Metal Semiconductor Field Effect Transistor (MESFET) is becoming more and more attractive for analog and RF applications due to its high breakdown voltage. Compared to conventional CMOS high voltage transistors, the silicon MESFET can be fabricated in commercial standard Silicon-on-Insulator (SOI) CMOS foundries without any change

The partially-depleted (PD) silicon Metal Semiconductor Field Effect Transistor (MESFET) is becoming more and more attractive for analog and RF applications due to its high breakdown voltage. Compared to conventional CMOS high voltage transistors, the silicon MESFET can be fabricated in commercial standard Silicon-on-Insulator (SOI) CMOS foundries without any change to the process. The transition frequency of the device is demonstrated to be 45GHz, which makes the MESFET suitable for applications in high power RF power amplifier designs. Also, high breakdown voltage and low turn-on resistance make it the ideal choice for switches in the switching regulator designs. One of the anticipated applications of the MESFET is for the pass device for a low dropout linear regulator. Conventional NMOS and PMOS linear regulators suffer from high dropout voltage, low bandwidth and poor stability issues. In contrast, the N-MESFET pass transistor can provide an ultra-low dropout voltage and high bandwidth without the need for an external compensation capacitor to ensure stability. In this thesis, the design theory and problems of the conventional linear regulators are discussed. N-MESFET low dropout regulators are evaluated and characterized. The error amplifier used a folded cascode architecture with gain boosting. The source follower topology is utilized as the buffer to sink the gate leakage current from the MESFET. A shunt-feedback transistor is added to reduce the output impedance and provide the current adaptively. Measurement results show that the dropout voltage is less than 150 mV for a 1A load current at 1.8V output. Radiation measurements were done for discrete MESFET and fully integrated LDO regulators, which demonstrate their radiation tolerance ability for aerospace applications.
ContributorsChen, Bo (Author) / Thornton, Trevor (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Goryll, Michael (Committee member) / Arizona State University (Publisher)
Created2013
152259-Thumbnail Image.png
Description
Synchronous buck converters have become the obvious choice of design for high efficiency voltage down-conversion applications and find wide scale usage in today's IC industry. The use of digital control in synchronous buck converters is becoming increasingly popular because of its associated advantages over traditional analog counterparts in terms of

Synchronous buck converters have become the obvious choice of design for high efficiency voltage down-conversion applications and find wide scale usage in today's IC industry. The use of digital control in synchronous buck converters is becoming increasingly popular because of its associated advantages over traditional analog counterparts in terms of design flexibility, reduced use of off-chip components, and better programmability to enable advanced controls. They also demonstrate better immunity to noise, enhances tolerance to the process, voltage and temperature (PVT) variations, low chip area and as a result low cost. It enables processing in digital domain requiring a need of analog-digital interfacing circuit viz. Analog to Digital Converter (ADC) and Digital to Analog Converter (DAC). A Digital to Pulse Width Modulator (DPWM) acts as time domain DAC required in the control loop to modulate the ON time of the Power-MOSFETs. The accuracy and efficiency of the DPWM creates the upper limit to the steady state voltage ripple of the DC - DC converter and efficiency in low load conditions. This thesis discusses the prevalent architectures for DPWM in switched mode DC - DC converters. The design of a Hybrid DPWM is presented. The DPWM is 9-bit accurate and is targeted for a Synchronous Buck Converter with a switching frequency of 1.0 MHz. The design supports low power mode(s) for the buck converter in the Pulse Frequency Modulation (PFM) mode as well as other fail-safe features. The design implementation is digital centric making it robust across PVT variations and portable to lower technology nodes. Key target of the design is to reduce design time. The design is tested across large Process (+/- 3σ), Voltage (1.8V +/- 10%) and Temperature (-55.0 °C to 125 °C) and is in the process of tape-out.
ContributorsKumar, Amit (Author) / Bakkaloglu, Bertan (Thesis advisor) / Song, Hongjiang (Committee member) / Kitchen, Jennifer (Committee member) / Arizona State University (Publisher)
Created2013
152170-Thumbnail Image.png
Description
Sliding-Mode Control (SMC) has several benefits over traditional Proportional-Integral-Differential (PID) control in terms of fast transient response, robustness to parameter and component variations, and low sensitivity to loop disturbances. An All-Digital Sliding-Mode (ADSM) controlled DC-DC converter, utilizing single-bit oversampled frequency domain digitizers is proposed. In the proposed approach, feedback and

Sliding-Mode Control (SMC) has several benefits over traditional Proportional-Integral-Differential (PID) control in terms of fast transient response, robustness to parameter and component variations, and low sensitivity to loop disturbances. An All-Digital Sliding-Mode (ADSM) controlled DC-DC converter, utilizing single-bit oversampled frequency domain digitizers is proposed. In the proposed approach, feedback and reference digitizing Analog-to-Digital Converters (ADC) are based on a single-bit, first order Sigma-Delta frequency to digital converter, running at 32MHz over-sampling rate. The ADSM regulator achieves 1% settling time in less than 5uSec for a load variation of 600mA. The sliding-mode controller utilizes a high-bandwidth hysteretic differentiator and an integrator to perform the sliding control law in digital domain. The proposed approach overcomes the steady state error (or DC offset), and limits the switching frequency range, which are the two common problems associated with sliding-mode controllers. The IC is designed and fabricated on a 0.35um CMOS process occupying an active area of 2.72mm-squared. Measured peak efficiency is 83%.
ContributorsDashtestani, Ahmad (Author) / Bakkaloglu, Bertan (Thesis advisor) / Thornton, Trevor (Committee member) / Song, Hongjiang (Committee member) / Kiaei, Sayfe (Committee member) / Arizona State University (Publisher)
Created2013
152413-Thumbnail Image.png
Description
Switch mode DC/DC converters are suited for battery powered applications, due to their high efficiency, which help in conserving the battery lifetime. Fixed Frequency PWM based converters, which are generally used for these applications offer good voltage regulation, low ripple and excellent efficiency at high load currents. However at light

Switch mode DC/DC converters are suited for battery powered applications, due to their high efficiency, which help in conserving the battery lifetime. Fixed Frequency PWM based converters, which are generally used for these applications offer good voltage regulation, low ripple and excellent efficiency at high load currents. However at light load currents, fixed frequency PWM converters suffer from poor efficiencies The PFM control offers higher efficiency at light loads at the cost of a higher ripple. The PWM has a poor efficiency at light loads but good voltage ripple characteristics, due to a high switching frequency. To get the best of both control modes, both loops are used together with the control switched from one loop to another based on the load current. Such architectures are referred to as hybrid converters. While transition from PFM to PWM loop can be made by estimating the average load current, transition from PFM to PWM requires voltage or peak current sensing. This theses implements a hysteretic PFM solution for a synchronous buck converter with external MOSFET's, to achieve efficiencies of about 80% at light loads. As the PFM loop operates independently of the PWM loop, a transition circuit for automatically transitioning from PFM to PWM is implemented. The transition circuit is implemented digitally without needing any external voltage or current sensing circuit.
ContributorsVivek, Parasuram (Author) / Bakkaloglu, Bertan (Thesis advisor) / Ogras, Umit Y. (Committee member) / Song, Hongjiang (Committee member) / Arizona State University (Publisher)
Created2014
149370-Thumbnail Image.png
Description
ABSTRACT Ongoing research into wireless transceivers in the 60 GHz band is required to address the demand for high data rate communications systems at a frequency where signal propagation is challenging even over short ranges. This thesis proposes a mixer architecture in Complementary Metal Oxide Semiconductor (CMOS) technology that uses

ABSTRACT Ongoing research into wireless transceivers in the 60 GHz band is required to address the demand for high data rate communications systems at a frequency where signal propagation is challenging even over short ranges. This thesis proposes a mixer architecture in Complementary Metal Oxide Semiconductor (CMOS) technology that uses a voltage controlled oscillator (VCO) operating at a fractional multiple of the desired output signal. The proposed topology is different from conventional subharmonic mixing in that the oscillator phase generation circuitry usually required for such a circuit is unnecessary. Analysis and simulations are performed on the proposed mixer circuit in an IBM 90 nm RF process on a 1.2 V supply. A typical RF transmitter system is considered in determining the block requirements needed for the mixer to meet the IEEE 802.11ad 60 GHz Draft Physical Layer Specification. The proposed circuit has a conversion loss of 21 dB at 60 GHz with a 5 dBm LO power at 20 GHz. Input-referred third-order intercept point (IIP3) is 2.93 dBm. The gain and linearity of the proposed mixer are sufficient for Orthogonal Frequency Division Multiplexing (OFDM) modulation at 60 GHz with a transmitted data rate of over 4 Gbps.
ContributorsMartino, Todd Jeffrey (Author) / Kiaei, Sayfe (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Aberle, James T., 1961- (Committee member) / Arizona State University (Publisher)
Created2010
149494-Thumbnail Image.png
Description
The constant scaling of supply voltages in state-of-the-art CMOS processes has led to severe limitations for many analog circuit applications. Some CMOS processes have addressed this issue by adding high voltage MOSFETs to their process. Although it can be a completely viable solution, it usually requires a changing of the

The constant scaling of supply voltages in state-of-the-art CMOS processes has led to severe limitations for many analog circuit applications. Some CMOS processes have addressed this issue by adding high voltage MOSFETs to their process. Although it can be a completely viable solution, it usually requires a changing of the process flow or adding additional steps, which in turn, leads to an increase in fabrication costs. Si-MESFETs (silicon-metal-semiconductor-field-effect-transistors) from Arizona State University (ASU) on the other hand, have an inherent high voltage capability and can be added to any silicon-on-insulator (SOI) or silicon-on-sapphire (SOS) CMOS process free of cost. This has been proved at five different commercial foundries on technologies ranging from 0.5 to 0.15 μm. Another critical issue facing CMOS processes on insulated substrates is the scaling of the thin silicon channel. Consequently, the future direction of SOI/SOS CMOS transistors may trend away from partially depleted (PD) transistors and towards fully depleted (FD) devices. FD-CMOS are already being implemented in multiple applications due to their very low power capability. Since the FD-CMOS market only figures to grow, it is appropriate that MESFETs also be developed for these processes. The beginning of this thesis will focus on the device aspects of both PD and FD-MESFETs including their layout structure, DC and RF characteristics, and breakdown voltage. The second half will then shift the focus towards implementing both types of MESFETs in an analog circuit application. Aside from their high breakdown ability, MESFETs also feature depletion mode operation, easy to adjust but well controlled threshold voltages, and fT's up to 45 GHz. Those unique characteristics can allow certain designs that were previously difficult to implement or prohibitively expensive using conventional technologies to now be achieved. One such application which benefits is low dropout regulators (LDO). By utilizing an n-channel MESFET as the pass transistor, a LDO featuring very low dropout voltage, fast transient response, and stable operation can be achieved without an external capacitance. With the focus of this thesis being MESFET based LDOs, the device discussion will be mostly tailored towards optimally designing MESFETs for this particular application.
ContributorsLepkowski, William (Author) / Thornton, Trevor (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Goryll, Michael (Committee member) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2010