Matching Items (7)
Filtering by

Clear all filters

Description
Volume depletion can lead to migraines, dizziness, and significant decreases in a subject's ability to physically perform. A major cause of volume depletion is dehydration, or loss in fluids due to an imbalance in fluid intake to fluid excretion. Because proper levels of hydration are necessary in order to maintain

Volume depletion can lead to migraines, dizziness, and significant decreases in a subject's ability to physically perform. A major cause of volume depletion is dehydration, or loss in fluids due to an imbalance in fluid intake to fluid excretion. Because proper levels of hydration are necessary in order to maintain both short and long term health, the ability to monitor hydration levels is growing in clinical demand. Although devices capable of monitoring hydration level exist, these devices are expensive, invasive, or inaccurate and do not offer a continuous mode of measurement. The ideal hydration monitor for consumer use needs to be characterized by its portability, affordability, and accuracy. Also, this device would need to be noninvasive and offer continuous hydration monitoring in order to accurately assess fluctuations in hydration data throughout a specified time period. One particular method for hydration monitoring that fits the majority of these criteria is known as bioelectric impedance analysis (BIA). Although current devices using BIA do not provide acceptable levels of accuracy, portability, or continuity in data collection, BIA could potentially be modified to fit many, if not all, desired customer specifications. The analysis presented here assesses the viability of using BIA as a new standard in hydration level measurement. The analysis uses data collected from 22 subjects using an existing device that employs BIA. A regression derived for estimating TBW based on the parameters of age, weight, height, sex, and impedance is presented. Using impedance data collected for each subject, a regression was also derived for estimating impedance based on the factors of age, weight, height, and sex. The derived regression was then used to calculate a new impedance value for each subject, and these new impedance values were used to estimate TBW. Through a paired-t test between the TBW values derived by using the direct measurements versus the calculated measurements of impedance, the two samples were found to be comparable. Considerations for BIA as a noninvasive measurement of hydration are discussed.
ContributorsTenorio, Jorge Antonio (Author) / LaBelle, Jeffrey (Thesis director) / Pizziconi, Vincent (Committee member) / Spano, Mark (Committee member) / Barrett, The Honors College (Contributor) / W. P. Carey School of Business (Contributor) / Harrington Bioengineering Program (Contributor)
Created2013-05
Description
The action/adventure game Grad School: HGH is the final, extended version of a BME Prototyping class project in which the goal was to produce a zombie-themed game that teaches biomedical engineering concepts. The gameplay provides fast paced, exciting, and mildly addicting rooms that the player must battle and survive through,

The action/adventure game Grad School: HGH is the final, extended version of a BME Prototyping class project in which the goal was to produce a zombie-themed game that teaches biomedical engineering concepts. The gameplay provides fast paced, exciting, and mildly addicting rooms that the player must battle and survive through, followed by an engineering puzzle that must be solved in order to advance to the next room. The objective of this project was to introduce the core concepts of BME to prospective students, rather than attempt to teach an entire BME curriculum. Based on user testing at various phases in the project, we concluded that the gameplay was engaging enough to keep most users' interest through the educational puzzles, and the potential for expanding this project to reach an even greater audience is vast.
ContributorsNitescu, George (Co-author) / Medawar, Alexandre (Co-author) / Spano, Mark (Thesis director) / LaBelle, Jeffrey (Committee member) / Guiang, Kristoffer (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
Description

Our project is to create a simplified, portable, modular electrocardiogram known as ECG/EKG. Most medical facilities, including hospitals, clinics, and skilled nursing facilities, still rely on traditional 12-lead EKG equipment consisting of a large cart with long 10 wires. These wires can be a pain to constantly detangle and rearrange

Our project is to create a simplified, portable, modular electrocardiogram known as ECG/EKG. Most medical facilities, including hospitals, clinics, and skilled nursing facilities, still rely on traditional 12-lead EKG equipment consisting of a large cart with long 10 wires. These wires can be a pain to constantly detangle and rearrange to determine a person’s heart conditions. This creates issues in fast paced scenarios such as when a patient is experiencing a heart attack and needs an EKG stat. Additionally, the current technology can be somewhat unreliable at determining heart conditions, causing providers to request multiple EKG’s for patients. With our improved versatile EKG, we can help solve these issues and implement additional outpatient use with its portable features. This can be done by remotely monitoring heart conditions during activities such as exercise, sleep, or stressful events, without worrying about wire disturbance.

ContributorsLam, Jadon (Author) / Mullins, Hunter (Co-author) / Huang, Hai (Co-author) / Taut, Sarah (Co-author) / Lee, Youngju (Co-author) / Goode, Zachary (Co-author) / Byrne, Jared (Thesis director) / Swader, Melissa (Committee member) / McElfish, Alex (Committee member) / Barrett, The Honors College (Contributor) / Department of Information Systems (Contributor) / Human Systems Engineering (Contributor)
Created2023-05
Description

Our project is to create a simplified, portable, modular electrocardiogram known as ECG/EKG. Most medical facilities, including hospitals, clinics, and skilled nursing facilities, still rely on traditional 12-lead EKG equipment consisting of a large cart with long 10 wires. These wires can be a pain to constantly detangle and rearrange

Our project is to create a simplified, portable, modular electrocardiogram known as ECG/EKG. Most medical facilities, including hospitals, clinics, and skilled nursing facilities, still rely on traditional 12-lead EKG equipment consisting of a large cart with long 10 wires. These wires can be a pain to constantly detangle and rearrange to determine a person’s heart conditions. This creates issues in fast paced scenarios such as when a patient is experiencing a heart attack and needs an EKG stat. Additionally, the current technology can be somewhat unreliable at determining heart conditions, causing providers to request multiple EKG’s for patients. With our improved versatile EKG, we can help solve these issues and implement additional outpatient use with its portable features. This can be done by remotely monitoring heart conditions during activities such as exercise, sleep, or stressful events, without worrying about wire disturbance.

ContributorsMullins, Hunter (Author) / Lam, Jadon (Co-author) / Goode, Zachary (Co-author) / Taut, Sarah (Co-author) / Lee, Youngju (Co-author) / Huang, Hai (Co-author) / Byrne, Jared (Thesis director) / Swader, Melissa (Committee member) / McElfish, Alex (Committee member) / Barrett, The Honors College (Contributor) / Engineering Programs (Contributor)
Created2023-05
Description

Our project is to create a simplified, portable, modular electrocardiogram known as ECG/EKG. Most medical facilities, including hospitals, clinics, and skilled nursing facilities, still rely on traditional 12-lead EKG equipment consisting of a large cart with long 10 wires. These wires can be a pain to constantly detangle and rearrange

Our project is to create a simplified, portable, modular electrocardiogram known as ECG/EKG. Most medical facilities, including hospitals, clinics, and skilled nursing facilities, still rely on traditional 12-lead EKG equipment consisting of a large cart with long 10 wires. These wires can be a pain to constantly detangle and rearrange to determine a person’s heart conditions. This creates issues in fast paced scenarios such as when a patient is experiencing a heart attack and needs an EKG stat. Additionally, the current technology can be somewhat unreliable at determining heart conditions, causing providers to request multiple EKG’s for patients. With our improved versatile EKG, we can help solve these issues and implement additional outpatient use with its portable features. This can be done by remotely monitoring heart conditions during activities such as exercise, sleep, or stressful events, without worrying about wire disturbance.

ContributorsLee, Youngju (Author) / Taut, Sarah (Co-author) / Goode, Zachary (Co-author) / Lam, Jadon (Co-author) / Huang, Hai (Co-author) / Mullins, Hunter (Co-author) / Byrne, Jared (Thesis director) / Swader, Melissa (Committee member) / McElfish, Alex (Committee member) / Barrett, The Honors College (Contributor) / Department of Management and Entrepreneurship (Contributor) / Dean, W.P. Carey School of Business (Contributor)
Created2023-05
Description

Our project is to create a simplified, portable, modular electrocardiogram known as ECG/EKG. Most medical facilities, including hospitals, clinics, and skilled nursing facilities, still rely on traditional 12-lead EKG equipment consisting of a large cart with long 10 wires. These wires can be a pain to constantly detangle and rearrange

Our project is to create a simplified, portable, modular electrocardiogram known as ECG/EKG. Most medical facilities, including hospitals, clinics, and skilled nursing facilities, still rely on traditional 12-lead EKG equipment consisting of a large cart with long 10 wires. These wires can be a pain to constantly detangle and rearrange to determine a person’s heart conditions. This creates issues in fast paced scenarios such as when a patient is experiencing a heart attack and needs an EKG stat. Additionally, the current technology can be somewhat unreliable at determining heart conditions, causing providers to request multiple EKG’s for patients. With our improved versatile EKG, we can help solve these issues and implement additional outpatient use with its portable features. This can be done by remotely monitoring heart conditions during activities such as exercise, sleep, or stressful events, without worrying about wire disturbance.

ContributorsGoode, Zachary (Author) / Huang, Hai (Co-author) / Lam, Jadon (Co-author) / Lee, Youngju (Co-author) / Taut, Sarah (Co-author) / Mullins, Hunter (Co-author) / Byrne, Jared (Thesis director) / Swader, Melissa (Committee member) / Barrett, The Honors College (Contributor) / Engineering Programs (Contributor) / School of Manufacturing Systems and Networks (Contributor)
Created2023-05
Description

Our project is to create a simplified, portable, modular electrocardiogram known as ECG/EKG. Most medical facilities, including hospitals, clinics, and skilled nursing facilities, still rely on traditional 12-lead EKG equipment consisting of a large cart with long 10 wires. These wires can be a pain to constantly detangle and rearrange

Our project is to create a simplified, portable, modular electrocardiogram known as ECG/EKG. Most medical facilities, including hospitals, clinics, and skilled nursing facilities, still rely on traditional 12-lead EKG equipment consisting of a large cart with long 10 wires. These wires can be a pain to constantly detangle and rearrange to determine a person’s heart conditions. This creates issues in fast paced scenarios such as when a patient is experiencing a heart attack and needs an EKG stat. Additionally, the current technology can be somewhat unreliable at determining heart conditions, causing providers to request multiple EKG’s for patients. With our improved versatile EKG, we can help solve these issues and implement additional outpatient use with its portable features. This can be done by remotely monitoring heart conditions during activities such as exercise, sleep, or stressful events, without worrying about wire disturbance.

ContributorsHuang, Hai (Author) / Mullins, Hunter (Co-author) / Lam, Jadon (Co-author) / Taut, Sarah (Co-author) / Goode, Zachary (Co-author) / Lee, Youngju (Co-author) / Byrne, Jared (Thesis director) / Swader, Melissa (Committee member) / McElfish, Alex (Committee member) / Barrett, The Honors College (Contributor) / Department of Information Systems (Contributor) / Department of Supply Chain Management (Contributor)
Created2023-05