Matching Items (178)
Filtering by

Clear all filters

137210-Thumbnail Image.png
Description
The exhaust system is an integral part of any internal combustion engine. A well- designed exhaust system efficiently removes exhaust gasses expelled from the cylinders. If tuned for performance purposes, the exhaust system can also exhibit scavenging and supercharging characteristics. This project reviews the major components of an exhaust system

The exhaust system is an integral part of any internal combustion engine. A well- designed exhaust system efficiently removes exhaust gasses expelled from the cylinders. If tuned for performance purposes, the exhaust system can also exhibit scavenging and supercharging characteristics. This project reviews the major components of an exhaust system and discusses the proper design techniques necessary to utilize the performance boosting potential of a tuned exhaust system for a four-stroke engine. These design considerations are then applied to Arizona State University's Formula SAE vehicle by comparing the existing system to a properly tuned system. An inexpensive testing method, developed specifically for this project, is used to test the effectiveness of the current design. The results of the test determined that the current design is ineffective at scavenging neighboring pipes of exhaust gasses and should be redesigned for better performance.
ContributorsKnutsen, Jeffrey Scott (Author) / Huang, Huei-Ping (Thesis director) / Steele, Bruce (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2014-05
152210-Thumbnail Image.png
Description
The National Research Council developed and published the Framework for K-12 Science Education, a new set of concepts that many states were planning on adopting. Part of this new endeavor included a set of science and engineering crosscutting concepts to be incorporated into science materials and activities, a first in

The National Research Council developed and published the Framework for K-12 Science Education, a new set of concepts that many states were planning on adopting. Part of this new endeavor included a set of science and engineering crosscutting concepts to be incorporated into science materials and activities, a first in science standards history. With the recent development of the Framework came the arduous task of evaluating current lessons for alignment with the new crosscutting concepts. This study took on that task in a small, yet important area of available lessons on the internet. Lessons, to be used by K-12 educators and students, were produced by different organizations and research efforts. This study focused specifically on Earth science lessons as they related to earthquakes. To answer the question as to the extent current and available lessons met the new crosscutting concepts; an evaluation rubric was developed and used to examine teacher and student lessons. Lessons were evaluated on evidence of the science, engineering and application of the engineering for each of the seven crosscutting concepts in the Framework. Each lesson was also evaluated for grade level appropriateness to determine if the lesson was suitable for the intended grade level(s) designated by the lesson. The study demonstrated that the majority of lesson items contained science applications of the crosscutting concepts. However, few contained evidence of engineering applications of the crosscutting concepts. Not only was there lack of evidence for engineering examples of the crosscutting concepts, but a lack of application engineering concepts as well. To evaluate application of the engineering concepts, the activities were examined for characteristics of the engineering design process. Results indicated that student activities were limited in both the nature of the activity and the quantity of lessons that contained activities. The majority of lessons were found to be grade appropriate. This study demonstrated the need to redesign current lessons to incorporate more engineering-specific examples from the crosscutting concepts. Furthermore, it provided evidence the current model of material development was out dated and should be revised to include engineering concepts to meet the needs of the new science standards.
ContributorsSchwab, Patrick (Author) / Baker, Dale (Thesis advisor) / Semken, Steve (Committee member) / Jordan, Shawn (Committee member) / Arizona State University (Publisher)
Created2013
151100-Thumbnail Image.png
Description
The ability to shift the photovoltaic (PV) power curve and make the energy accessible during peak hours can be accomplished through pairing solar PV with energy storage technologies. A prototype hybrid air conditioning system (HACS), built under supervision of project head Patrick Phelan, consists of PV modules running a DC

The ability to shift the photovoltaic (PV) power curve and make the energy accessible during peak hours can be accomplished through pairing solar PV with energy storage technologies. A prototype hybrid air conditioning system (HACS), built under supervision of project head Patrick Phelan, consists of PV modules running a DC compressor that operates a conventional HVAC system paired with a second evaporator submerged within a thermal storage tank. The thermal storage is a 0.284m3 or 75 gallon freezer filled with Cryogel balls, submerged in a weak glycol solution. It is paired with its own separate air handler, circulating the glycol solution. The refrigerant flow is controlled by solenoid valves that are electrically connected to a high and low temperature thermostat. During daylight hours, the PV modules run the DC compressor. The refrigerant flow is directed to the conventional HVAC air handler when cooling is needed. Once the desired room temperature is met, refrigerant flow is diverted to the thermal storage, storing excess PV power. During peak energy demand hours, the system uses only small amounts of grid power to pump the glycol solution through the air handler (note the compressor is off), allowing for money and energy savings. The conventional HVAC unit can be scaled down, since during times of large cooling demands the glycol air handler can be operated in parallel with the conventional HVAC unit. Four major test scenarios were drawn up in order to fully comprehend the performance characteristics of the HACS. Upon initial running of the system, ice was produced and the thermal storage was charged. A simple test run consisting of discharging the thermal storage, initially ~¼ frozen, was performed. The glycol air handler ran for 6 hours and the initial cooling power was 4.5 kW. This initial test was significant, since greater than 3.5 kW of cooling power was produced for 3 hours, thus demonstrating the concept of energy storage and recovery.
ContributorsPeyton-Levine, Tobin (Author) / Phelan, Patrick (Thesis advisor) / Trimble, Steve (Committee member) / Wang, Robert (Committee member) / Arizona State University (Publisher)
Created2012
148502-Thumbnail Image.png
Description

Pelvic Circumferential Compression Devices (PCCDs), an important medical device when caring for patients with pelvic fractures, play a crucial role in the stabilization and reduction of the fracture. During pelvic fracture cases, control of internal bleeding through access to the femoral artery is of utmost importance. Current designs of PCCDs

Pelvic Circumferential Compression Devices (PCCDs), an important medical device when caring for patients with pelvic fractures, play a crucial role in the stabilization and reduction of the fracture. During pelvic fracture cases, control of internal bleeding through access to the femoral artery is of utmost importance. Current designs of PCCDs do not allow vital access to this artery and in attempts to gain access, medical professionals and emergency care providers choose to cut into the PCCDs or place them in suboptimal positions with unknown downstream effects. We researched the effects on surface pressure and the overall pressure distribution created by the PCCDs when they are modified or placed incorrectly on the patient. In addition, we investigated the effects of those misuses on pelvic fracture reduction, a key parameter in stabilizing the patient during critical care. We hypothesized that incorrectly placing or modifying the PCCD will result in increased surface pressure and decreased fracture reduction. Our mannequin studies show that for SAM Sling and T-POD, surface pressure increases if a PCCD is incorrectly placed or modified, in support of our hypothesis. However, opposite results occurred for the Pelvic Binder, where the correctly placed PCCD had higher surface pressure when compared to the incorrectly placed or modified PCCD. Additionally, pressure distribution was significantly affected by the modification of the PCCDs. The cadaver lab measurements show that modifying or incorrectly placing the PCCDs significantly limits their ability to reduce the pelvic fracture. These results suggest that while modifying or incorrectly placing PCCDs allows access to the femoral artery, there are potentially dangerous effects to the patient including increased surface pressures and limited fracture reduction.

ContributorsConley, Ian Patrick (Co-author) / Ryder, Madison (Co-author) / Vernon, Brent (Thesis director) / Bogert, James (Committee member) / Harrington Bioengineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
136539-Thumbnail Image.png
Description
Engineering education has long sought to incorporate greater diversity into engineering programs to prepare the profession to meet the engineering challenges of society. Increasing or retaining the conative diversity of engineering programs may help extend other kinds of diversity in the profession as well (Marburger, 2004). One measure of conation

Engineering education has long sought to incorporate greater diversity into engineering programs to prepare the profession to meet the engineering challenges of society. Increasing or retaining the conative diversity of engineering programs may help extend other kinds of diversity in the profession as well (Marburger, 2004). One measure of conation is the Kolbe ATM index.
Kolbe ATM is an index developed by Kathy Kolbe to measure the conative traits on an individual. The index assigns each individual a value in four categories, or Action Modes, that indicates their level of insistence on a scale of 1 to 10 in that Action Mode (Kolbe, 2004). The four Action Modes are:

• Fact Finder – handling of information or facts
• Follow Thru – need to pattern or organize
• Quick Start – management of risk or uncertainty
• Implementor – interaction with space or tangibles

The Kolbe A (TM) index assigns each individual a value that indicates their level of insistence with 1-3 representing resistant, preventing problems in a particular Action Mode; 4-6 indicating accommodation, flexibility in a particular Action Mode; and 7-10 indicating insistence in an Action Mode, initiating solutions in that Action Mode (Kolbe, 2004).

To promote retention of conative diversity, this study examines conative diversity in two engineering student populations, a predominately freshmen population at Chandler Gilbert Community College and a predominately junior population at Arizona State University. Students in both population took a survey that asked them to self-report their GPA, satisfaction with required courses in their major, Kolbe ATM conative index, and how much their conative traits help them in each of the classes on the survey. The classes in the survey included two junior level classes at ASU, Engineering Business Practices and Structural Analysis; as well as four freshmen engineering classes, Physics Lecture, Physics Lab, English Composition, and Calculus I.

This study finds that student satisfaction has no meaningful correlation with student GPA.
The study also finds that engineering programs have a dearth of resistant Fact Finders from the freshmen level on and losses resistant Follow Thrus and insistent Quick Starts as time progresses. Students whose conative indices align well with the structure of the engineering program tend to consider their conative traits helpful to them in their engineering studies. Students whose conative indices misalign with the structure of the program report that they consider their strengths less helpful to them in their engineering studies.
This study recommends further research into the relationship between satisfaction with major and conation and into perceived helpfulness of conative traits by students. Educators should continue to use Kolbe A (TM) in the classroom and perform further research on the impacts of conation on diversity in engineering programs.
ContributorsSmith, Logan Farren (Author) / Seager, Thomas P. (Thesis director) / Adams, Elizabeth A. (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2015-05
136181-Thumbnail Image.png
Description
A robotic exploration mission that would enter a lunar pit to characterize the environment is described. A hopping mechanism for the robot's mobility is proposed. Various methods of hopping drawn from research literature are discussed in detail. The feasibilities of mechanical, electric, fluid, and combustive methods are analyzed. Computer simulations

A robotic exploration mission that would enter a lunar pit to characterize the environment is described. A hopping mechanism for the robot's mobility is proposed. Various methods of hopping drawn from research literature are discussed in detail. The feasibilities of mechanical, electric, fluid, and combustive methods are analyzed. Computer simulations show the mitigation of the risk of complex autonomous navigation systems. A mechanical hopping mechanism is designed to hop in Earth gravity and carry a payload half its mass. A physical experiment is completed and proves a need for further refinement of the prototype design. Future work is suggested to continue exploring hopping as a mobility method for the lunar robot.
ContributorsMcKinney, Tyler James (Author) / Thangavelautham, Jekan (Thesis director) / Robinson, Mark (Committee member) / Asphaug, Erik (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2015-05
136204-Thumbnail Image.png
Description
This thesis investigates the viability of a solar still for desalination of a personal water supply. The end goal of the project is to create a design that meets the output requirement while tailoring the components to focus on low cost so it would be feasible in the impoverished areas

This thesis investigates the viability of a solar still for desalination of a personal water supply. The end goal of the project is to create a design that meets the output requirement while tailoring the components to focus on low cost so it would be feasible in the impoverished areas of the world. The primary requirement is an output of 3 liters of potable water per day, the minimum necessary for an adult human. The study examines the effect of several design parameters, such as the basin material, basin thickness, starting water depth, basin dimensions, cover material, cover angle, and cover thickness. A model for the performance of a solar still was created in MATLAB to simulate the system's behavior and sensitivity to these parameters. An instrumented prototype solar still demonstrated viability of the concept and provided data for validation of the MATLAB model.
ContributorsRasmussen, Dylan James (Author) / Wells, Valana (Thesis director) / Trimble, Steven (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2015-05
135836-Thumbnail Image.png
Description
To supplement lectures, various resources are available to students; however, little research has been done to look systematically at which resources studies find most useful and the frequency at which they are used. We have conducted a preliminary study looking at various resources available in an introductory material science course

To supplement lectures, various resources are available to students; however, little research has been done to look systematically at which resources studies find most useful and the frequency at which they are used. We have conducted a preliminary study looking at various resources available in an introductory material science course over four semesters using a custom survey called the Student Resource Value Survey (SRVS). More specifically, the SRVS was administered before each test to determine which resources students use to do well on exams. Additionally, over the course of the semester, which resources students used changed. For instance, study resources for exams including the use of homework problems decreased from 81% to 50%, the utilization of teaching assistant for exam studying increased from 25% to 80%, the use of in class Muddiest Points for exam study increased form 28% to 70%, old exams and quizzes only slightly increased for exam study ranging from 78% to 87%, and the use of drop-in tutoring services provided to students at no charge decreased from 25% to 17%. The data suggest that students thought highly of peer interactions by using those resources more than tutoring centers. To date, no research has been completed looking at courses at the department level or a different discipline. To this end, we adapted the SRVS administered in material science to investigate resource use in thirteen biomedical engineering (BME) courses. Here, we assess the following research question: "From a variety of resources, which do biomedical engineering students feel addresses difficult concept areas, prepares them for examinations, and helps in computer-aided design (CAD) and programming the most and with what frequency?" The resources considered include teaching assistants, classroom notes, prior exams, homework problems, Muddiest Points, office hours, tutoring centers, group study, and the course textbook. Results varied across the four topical areas: exam study, difficult concept areas, CAD software, and math-based programming. When preparing for exams and struggling with a learning concept, the most used and useful resources were: 1) homework problems, 2) class notes and 3) group studying. When working on math-based programming (Matlab and Mathcad) as well as computer-aided design, the most used and useful resources were: 1) group studying, 2) engineering tutoring center, and 3) undergraduate teaching assistants. Concerning learning concepts and exams in the BME department, homework problems and class notes were considered some of the highest-ranking resources for both frequency and usefulness. When comparing to the pilot study in MSE, both BME and MSE students tend to highly favor peer mentors and old exams as a means of studying for exams at the end of the semester1. Because the MSE course only considered exams, we cannot make any comparisons to BME data concerning programming and CAD. This analysis has highlighted potential resources that are universally beneficial, such as the use of peer work, i.e. group studying, engineering tutoring center, and teaching assistants; however, we see differences by both discipline and topical area thereby highlighting the need to determine important resources on a class-by-class basis as well.
ContributorsMalkoc, Aldin (Author) / Ankeny, Casey (Thesis director) / Krause, Stephen (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135785-Thumbnail Image.png
Description
Recurring incidents between pedestrians, bicycles, and vehicles at the intersection of Rural Road and Spence Avenue led to a team of students conducting their own investigation into the current conditions and analyzing a handful of alternatives. An extension of an industry-standard technique was used to build a control case which

Recurring incidents between pedestrians, bicycles, and vehicles at the intersection of Rural Road and Spence Avenue led to a team of students conducting their own investigation into the current conditions and analyzing a handful of alternatives. An extension of an industry-standard technique was used to build a control case which alternatives would be compared to. Four alternatives were identified, and the two that could be modeled in simulation software were both found to be technically feasible in the preliminary analysis.
ContributorsFellows, Christopher Lee (Author) / Lou, Yingyan (Thesis director) / Zhou, Xuesong (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136909-Thumbnail Image.png
Description
The following document addresses two grand challenges posed to engineers: to make solar energy economically viable and to restore and improve urban infrastructure. Design solutions to these problems consist of the preliminary designs of two energy systems: a Packaged Photovoltaic (PPV) energy system and a natural gas based Modular Micro

The following document addresses two grand challenges posed to engineers: to make solar energy economically viable and to restore and improve urban infrastructure. Design solutions to these problems consist of the preliminary designs of two energy systems: a Packaged Photovoltaic (PPV) energy system and a natural gas based Modular Micro Combined Cycle (MMCC) with 3D renderings. Defining requirements and problem-solving approach methodology for generating complex design solutions required iterative design and a thorough understanding of industry practices and market trends. This paper briefly discusses design specifics; however, the major emphasis is on aspects pertaining to economical manufacture, deployment, and subsequent suitability to address the aforementioned challenges. The selection of these systems is based on the steady reduction of PV installation costs in recent years (average among utility, commercial, and residential down 27% from Q4 2012 to Q4 2013) and the dramatic decline in natural gas prices to $5.61 per thousand cubic feet. In addition, a large number of utility scale coal-based power plants will be retired in 2014, many due to progressive emission criteria, creating a demand for additional power systems to offset the capacity loss and to increase generating capacity in order to facilitate the ever-expanding world population. The proposed energy systems are not designed to provide power to the masses through a central location. Rather, they are intended to provide economical, reliable, and high quality power to remote locations and decentralized power to community-based grids. These energy systems are designed as a means of transforming and supporting the current infrastructure through distributed electricity generation.
ContributorsSandoval, Benjamin Mark (Author) / Bryan, Harvey (Thesis director) / Fonseca, Ernesto (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2014-05