Matching Items (8)
Filtering by

Clear all filters

152098-Thumbnail Image.png
Description
Natural resource depletion and environmental degradation are the stark realities of the times we live in. As awareness about these issues increases globally, industries and businesses are becoming interested in understanding and minimizing the ecological footprints of their activities. Evaluating the environmental impacts of products and processes has become a

Natural resource depletion and environmental degradation are the stark realities of the times we live in. As awareness about these issues increases globally, industries and businesses are becoming interested in understanding and minimizing the ecological footprints of their activities. Evaluating the environmental impacts of products and processes has become a key issue, and the first step towards addressing and eventually curbing climate change. Additionally, companies are finding it beneficial and are interested in going beyond compliance using pollution prevention strategies and environmental management systems to improve their environmental performance. Life-cycle Assessment (LCA) is an evaluative method to assess the environmental impacts associated with a products' life-cycle from cradle-to-grave (i.e. from raw material extraction through to material processing, manufacturing, distribution, use, repair and maintenance, and finally, disposal or recycling). This study focuses on evaluating building envelopes on the basis of their life-cycle analysis. In order to facilitate this analysis, a small-scale office building, the University Services Building (USB), with a built-up area of 148,101 ft2 situated on ASU campus in Tempe, Arizona was studied. The building's exterior envelope is the highlight of this study. The current exterior envelope is made of tilt-up concrete construction, a type of construction in which the concrete elements are constructed horizontally and tilted up, after they are cured, using cranes and are braced until other structural elements are secured. This building envelope is compared to five other building envelope systems (i.e. concrete block, insulated concrete form, cast-in-place concrete, steel studs and curtain wall constructions) evaluating them on the basis of least environmental impact. The research methodology involved developing energy models, simulating them and generating changes in energy consumption due to the above mentioned envelope types. Energy consumption data, along with various other details, such as building floor area, areas of walls, columns, beams etc. and their material types were imported into Life-Cycle Assessment software called ATHENA impact estimator for buildings. Using this four-stepped LCA methodology, the results showed that the Steel Stud envelope performed the best and less environmental impact compared to other envelope types. This research methodology can be applied to other building typologies.
ContributorsRamachandran, Sriranjani (Author) / Bryan, Harvey (Thesis advisor) / Reddy T, Agami (Committee member) / White, Philip (Committee member) / Arizona State University (Publisher)
Created2013
151916-Thumbnail Image.png
Description
Through manipulation of adaptable opportunities available within a given environment, individuals become active participants in managing personal comfort requirements, by exercising control over their comfort without the assistance of mechanical heating and cooling systems. Similarly, continuous manipulation of a building skin's form, insulation, porosity, and transmissivity qualities exerts control over

Through manipulation of adaptable opportunities available within a given environment, individuals become active participants in managing personal comfort requirements, by exercising control over their comfort without the assistance of mechanical heating and cooling systems. Similarly, continuous manipulation of a building skin's form, insulation, porosity, and transmissivity qualities exerts control over the energy exchanged between indoor and outdoor environments. This research uses four adaptive response variables in a modified software algorithm to explore an adaptive building skin's potential in reacting to environmental stimuli with the purpose of minimizing energy use without sacrificing occupant comfort. Results illustrate that significant energy savings can be realized with adaptive envelopes over static building envelopes even under extreme summer and winter climate conditions; that the magnitude of these savings are dependent on climate and orientation; and that occupant thermal comfort can be improved consistently over comfort levels achieved by optimized static building envelopes. The resulting adaptive envelope's unique climate-specific behavior could inform designers in creating an intelligent kinetic aesthetic that helps facilitate adaptability and resiliency in architecture.
ContributorsErickson, James (Author) / Bryan, Harvey (Thesis advisor) / Addison, Marlin (Committee member) / Kroelinger, Michael D. (Committee member) / Reddy, T. Agami (Committee member) / Arizona State University (Publisher)
Created2013
Description
The building sector is responsible for consuming the largest proportional share of global material and energy resources. Some observers assert that buildings are the problem and the solution to climate change. It appears that in the United States a coherent national energy policy to encourage rapid building performance improvements is

The building sector is responsible for consuming the largest proportional share of global material and energy resources. Some observers assert that buildings are the problem and the solution to climate change. It appears that in the United States a coherent national energy policy to encourage rapid building performance improvements is not imminent. In this environment, where many climate and ecological scientists believe we are running out of time to reverse the effects of anthropogenic climate change, a local grass-roots effort to create demonstration net zero-energy buildings (ZEB) appears necessary. This paper documents the process of designing a ZEB in a community with no existing documented ZEB precedent. The project will establish a framework for collecting design, performance, and financial data for use by architects, building scientists, and the community at large. This type of information may prove critical in order to foster a near-term local demand for net zero-energy buildings.
ContributorsFrancis, Alan Merrill (Author) / Bryan, Harvey (Thesis advisor) / Addison, Marlin (Committee member) / Ramalingam, Muthukumar (Committee member) / Arizona State University (Publisher)
Created2014
156755-Thumbnail Image.png
Description
Learning from the anatomy of leaves, a new approach to bio-inspired passive evaporative cooling is presented that utilizes the temperature-responsive properties of PNIPAm hydrogels. Specifically, an experimental evaporation rate from the polymer, PNIPAm, is determined within an environmental chamber, which is programmed to simulate temperature and humidity conditions common in

Learning from the anatomy of leaves, a new approach to bio-inspired passive evaporative cooling is presented that utilizes the temperature-responsive properties of PNIPAm hydrogels. Specifically, an experimental evaporation rate from the polymer, PNIPAm, is determined within an environmental chamber, which is programmed to simulate temperature and humidity conditions common in Phoenix, Arizona in the summer. This evaporation rate is then used to determine the theoretical heat transfer through a layer of PNIPAm that is attached to an exterior wall of a building within a ventilated cavity in Phoenix. The evaporation of water to the air gap from the polymer layer absorbs heat that could otherwise be conducted to the interior space of the building and then dispels it as a vapor away from the building. The results indicate that the addition of the PNIPAm layer removes all heat radiated from the exterior cladding, indicating that it could significantly reduce the demand for air conditioning at the interior side of the wall to which it is attached.
ContributorsBradford, Katherine (Author) / Reddy, T A (Thesis advisor) / Bryan, Harvey (Thesis advisor) / Ramalingam, Muthu (Committee member) / Arizona State University (Publisher)
Created2018
136909-Thumbnail Image.png
Description
The following document addresses two grand challenges posed to engineers: to make solar energy economically viable and to restore and improve urban infrastructure. Design solutions to these problems consist of the preliminary designs of two energy systems: a Packaged Photovoltaic (PPV) energy system and a natural gas based Modular Micro

The following document addresses two grand challenges posed to engineers: to make solar energy economically viable and to restore and improve urban infrastructure. Design solutions to these problems consist of the preliminary designs of two energy systems: a Packaged Photovoltaic (PPV) energy system and a natural gas based Modular Micro Combined Cycle (MMCC) with 3D renderings. Defining requirements and problem-solving approach methodology for generating complex design solutions required iterative design and a thorough understanding of industry practices and market trends. This paper briefly discusses design specifics; however, the major emphasis is on aspects pertaining to economical manufacture, deployment, and subsequent suitability to address the aforementioned challenges. The selection of these systems is based on the steady reduction of PV installation costs in recent years (average among utility, commercial, and residential down 27% from Q4 2012 to Q4 2013) and the dramatic decline in natural gas prices to $5.61 per thousand cubic feet. In addition, a large number of utility scale coal-based power plants will be retired in 2014, many due to progressive emission criteria, creating a demand for additional power systems to offset the capacity loss and to increase generating capacity in order to facilitate the ever-expanding world population. The proposed energy systems are not designed to provide power to the masses through a central location. Rather, they are intended to provide economical, reliable, and high quality power to remote locations and decentralized power to community-based grids. These energy systems are designed as a means of transforming and supporting the current infrastructure through distributed electricity generation.
ContributorsSandoval, Benjamin Mark (Author) / Bryan, Harvey (Thesis director) / Fonseca, Ernesto (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2014-05
134597-Thumbnail Image.png
Description
Hospitals constitute 9 percent of commercial energy consumption in the U.S. annually, though they only make up 2 percent of the U.S. commercial floor space. Consuming an average of 259,000 Btu per square foot, U.S. hospitals spend about 8.3 billion dollars on energy every year. Utilizing collaborative delivery method for

Hospitals constitute 9 percent of commercial energy consumption in the U.S. annually, though they only make up 2 percent of the U.S. commercial floor space. Consuming an average of 259,000 Btu per square foot, U.S. hospitals spend about 8.3 billion dollars on energy every year. Utilizing collaborative delivery method for hospital construction can effectively save healthcare business owners thousands of dollars while reducing construction time and resulting in a better product: a building that has fewer operational deficiencies and requires less maintenance. Healthcare systems are integrated by nature, and are rich in technical complexity to meet the needs of their various patients. In addition to being technologically and energy intensive, hospitals must meet health regulations while maintaining human comfort. The interdisciplinary nature of hospitals suggests that multiple perspectives would be valuable in optimizing the building design. Integrated project delivery provides a means to reaching the optimal design by emphasizing group collaboration and expertise of the architect, engineer, owner, builder, and hospital staff. In previous studies, IPD has proven to be particularly beneficial when it comes to highly complex projects, such as hospitals. To assess the effects of a high level of team collaboration in the delivery of a hospital, case studies were prepared on several hospitals that have been built in the past decade. The case studies each utilized some form of a collaborative delivery method, and each were successful in saving and/or redirecting time and money to other building components, achieving various certifications, recognitions, and awards, and satisfying the client. The purpose of this research is to determine key strategies in the construction of healthcare facilities that allow for quicker construction, greater monetary savings, and improved operational efficiency. This research aims to communicate the value of both "green building" and a high level of team collaboration in the hospital-building process.
ContributorsHansen, Hannah Elizabeth (Author) / Parrish, Kristen (Thesis director) / Bryan, Harvey (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
161509-Thumbnail Image.png
Description
Building-integrated carbon-capture (BICC) is an envisioned mechanism capable of absorbing carbon dioxide (CO2) from the air to be stored and then converted into useful carbon-based materials without negatively impacting the environment. This dissertation builds on the authors' previous work, in which building façades were treated as artificial leaves capable of

Building-integrated carbon-capture (BICC) is an envisioned mechanism capable of absorbing carbon dioxide (CO2) from the air to be stored and then converted into useful carbon-based materials without negatively impacting the environment. This dissertation builds on the authors' previous work, in which building façades were treated as artificial leaves capable of providing shade to lower solar heat gain, while simultaneously capturing CO2 through the air filters attached to the building façades by attempting a different approach capable of capturing CO2 within buildings. This dissertation presents the author’s work on BICC, where buildings are envisioned as CO2 reservoirs or vacuums, into which mechanical systems introduce fresh air, and through human activities, the air within the building becomes enriched with CO2 before being pushed out back to the outer environment. The design of a carbon-capture mechanism will take advantage of the ventilation side of existing HVAC systems, through which BICC captures CO2 from the exhaust-enriched CO2 air. BICC will utilize existing opportunities and components within buildings represented in the high CO2 concentration in buildings, ventilation guidelines, mechanical equipment represented in air handling unit and air duct network, in addition to natural gas grid connectivity. BICC will capture CO2 through buildings' mechanical system, and the captured CO2 would then be converted into renewable methane to be injected into the existing natural gas pipeline network. This dissertation will investigate the potential of BICC to offset carbon emissions from multiple commercial building types and will present a utilization strategy for the captured carbon.
ContributorsBen Salamah, Fahad (Author) / Bryan, Harvey (Thesis advisor) / Lackner, Klaus (Committee member) / Reddy, T Agami (Committee member) / Arizona State University (Publisher)
Created2021
153551-Thumbnail Image.png
Description
An acute and crucial societal problem is the energy consumed in existing commercial buildings. There are 1.5 million commercial buildings in the U.S. with only about 3% being built each year. Hence, existing buildings need to be properly operated and maintained for several decades. Application of integrated centralized control systems

An acute and crucial societal problem is the energy consumed in existing commercial buildings. There are 1.5 million commercial buildings in the U.S. with only about 3% being built each year. Hence, existing buildings need to be properly operated and maintained for several decades. Application of integrated centralized control systems in buildings could lead to more than 50% energy savings.

This research work demonstrates an innovative adaptive integrated lighting control approach which could achieve significant energy savings and increase indoor comfort in high performance office buildings. In the first phase of the study, a predictive algorithm was developed and validated through experiments in an actual test room. The objective was to regulate daylight on a specified work plane by controlling the blind slat angles. Furthermore, a sensor-based integrated adaptive lighting controller was designed in Simulink which included an innovative sensor optimization approach based on genetic algorithm to minimize the number of sensors and efficiently place them in the office. The controller was designed based on simple integral controllers. The objective of developed control algorithm was to improve the illuminance situation in the office through controlling the daylight and electrical lighting. To evaluate the performance of the system, the controller was applied on experimental office model in Lee et al.’s research study in 1998. The result of the developed control approach indicate a significantly improvement in lighting situation and 1-23% and 50-78% monthly electrical energy savings in the office model, compared to two static strategies when the blinds were left open and closed during the whole year respectively.
ContributorsKarizi, Nasim (Author) / Reddy, T. Agami (Thesis advisor) / Bryan, Harvey (Committee member) / Dasgupta, Partha (Committee member) / Kroelinger, Michael D. (Committee member) / Arizona State University (Publisher)
Created2015