Matching Items (2)
Filtering by

Clear all filters

Description

Cornhole, traditionally seen as tailgate entertainment, has rapidly risen in popularity since the launching of the American Cornhole League in 2016. However, it lacks robust quality control over large tournaments, since many of the matches are scored and refereed by the players themselves. In the past, there have been issues

Cornhole, traditionally seen as tailgate entertainment, has rapidly risen in popularity since the launching of the American Cornhole League in 2016. However, it lacks robust quality control over large tournaments, since many of the matches are scored and refereed by the players themselves. In the past, there have been issues where entire competition brackets have had to be scrapped and replayed because scores were not handled correctly. The sport is in need of a supplementary scoring solution that can provide quality control and accuracy over large matches where there aren’t enough referees present to score games. Drawing from the ACL regulations as well as personal experience and testimony from ACL Pro players, a list of requirements was generated for a potential automatic scoring system. Then, a market analysis of existing scoring solutions was done, and it found that there are no solutions on the market that can automatically score a cornhole game. Using the problem requirements and previous attempts to solve the scoring problem, a list of concepts was generated and evaluated against each other to determine which scoring system design should be developed. After determining that the chosen concept was the best way to approach the problem, the problem requirements and cornhole rules were further refined into a set of physical assumptions and constraints about the game itself. This informed the choice, structure, and implementation of the algorithms that score the bags. The prototype concept was tested on their own, and areas of improvement were found. Lastly, based on the results of the tests and what was learned from the engineering process, a roadmap was set out for the future development of the automatic scoring system into a full, market-ready product.

ContributorsGillespie, Reagan (Author) / Sugar, Thomas (Thesis director) / Li, Baoxin (Committee member) / Barrett, The Honors College (Contributor) / Engineering Programs (Contributor) / Dean, W.P. Carey School of Business (Contributor)
Created2023-05
165856-Thumbnail Image.png
Description

Realtime understanding of one’s complete metabolic state is crucial to controlling weight and managing chronic illnesses, such as diabetes. This project represents the development of a novel breath acetone sensor within the Biodesign Institute’s Center for Bioelectronics and Biosensors. The purpose is to determine if a sensor can be manufactured

Realtime understanding of one’s complete metabolic state is crucial to controlling weight and managing chronic illnesses, such as diabetes. This project represents the development of a novel breath acetone sensor within the Biodesign Institute’s Center for Bioelectronics and Biosensors. The purpose is to determine if a sensor can be manufactured with the capacity to measure breath acetone concentrations typical of various levels of metabolic activity. For this purpose, a solution that selectively interacts with acetone was embedded in a sensor cartridge that is permeable to volatile organic compounds. After 30 minutes of exposure to a range of acetone concentrations, a color change response was observed in the sensors. Requiring only exposure to a breath, these novel sensor configurations may offer non-trivial improvements to clinical and at-home measurement of lipid metabolic rate.

ContributorsDenham, Landon (Author) / Forzani, Erica (Thesis director) / Mora, Sabrina Jimena (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2022-05