Matching Items (154)
Filtering by

Clear all filters

131202-Thumbnail Image.png
Description
The purpose of this study is to spark a discussion for engineers and their firms to consider the impact of border barriers on wildlife. The focus of this study is to consider if or how engineers make those considerations, such as through design modifications. Barriers block wildlife migration patterns, disabling

The purpose of this study is to spark a discussion for engineers and their firms to consider the impact of border barriers on wildlife. The focus of this study is to consider if or how engineers make those considerations, such as through design modifications. Barriers block wildlife migration patterns, disabling them from life-sustaining resources. This is particularly important due to an increasing trend in habitat loss, urban development, and climate change. During literature analysis of border barrier impacts, and outreaching to relevant organizations and individuals, there was little to no public documentation or discussion from the engineering community found. Discussion that was found is included in this study, but the lack of connection between conservation and engineering professionals is eminently profound. Therefore, the analysis of studying engineering design considerations additionally studied the relationship between environmental and engineering professionals. Types of research included involves literature analysis of journal articles, reports, project plans for construction, and environmental laws pertinent to wildlife impact.
ContributorsMcMillin, Kaci (Author) / Karwat, Darshan (Thesis director) / Senko, Jesse (Committee member) / Engineering Programs (Contributor) / Environmental and Resource Management (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
132513-Thumbnail Image.png
Description
In this research, the effect of the crystal structure of the parent phase on the morphology of nanoporous gold is explored. Specifically, Cu-Au alloys are studied. For this experiment, Cu0.75Au0.25 is heat treated to achieve an ordered phase Cu3Au and a disordered random solid solution, face centered cubic, Cu0.75Au0.25 phase,

In this research, the effect of the crystal structure of the parent phase on the morphology of nanoporous gold is explored. Specifically, Cu-Au alloys are studied. For this experiment, Cu0.75Au0.25 is heat treated to achieve an ordered phase Cu3Au and a disordered random solid solution, face centered cubic, Cu0.75Au0.25 phase, which are then dealloyed to form nanoporous gold (NPG). Using a morphology digital image analysis software called AQUAMI, SEM images of the NPG morphology were characterized to collect data on the ligament length, ligament diameter, porosity size, etc. of the samples. It was determined that the NPG formed from the ordered parent phase had an average ligament diameter that was 10 nm larger than the NPG formed from the disordered parent phase. This may be due to the ordered crystal structure allowing for faster gold diffusion and coarsening resulting in an increased average ligament size. Further future work is needed in order to obtain further evidence to support this hypothesis.
ContributorsTse, Ariana Yusof (Author) / Sieradzki, Karl (Thesis director) / Wang, Qing Hua (Committee member) / Materials Science and Engineering Program (Contributor) / Walter Cronkite School of Journalism & Mass Comm (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132377-Thumbnail Image.png
Description
Educational institutions are in a unique position to take advantage of computers and software in new, innovative ways. The Mechanics Project at Arizona State University has done an exceptional job integrating many new ways of engaging students and providing resources that can help them learn course material in a way

Educational institutions are in a unique position to take advantage of computers and software in new, innovative ways. The Mechanics Project at Arizona State University has done an exceptional job integrating many new ways of engaging students and providing resources that can help them learn course material in a way that they can understand. However, there is still very little research on how to best compose multimedia content for student use.

This project aims to determine what students struggle with in these courses and develop multimedia content to support their education in Dynamics specifically.
Created2019-05
132393-Thumbnail Image.png
Description
Engineering has historically been dominated by White men. However, in modern history, engineering is becoming more diverse as the opportunity to pursue engineering has become accessible to people of all races and genders. Yet, college ready high school students from nontraditional backgrounds—women, ethnic minorities, first-generation-to-college students, and those with financial

Engineering has historically been dominated by White men. However, in modern history, engineering is becoming more diverse as the opportunity to pursue engineering has become accessible to people of all races and genders. Yet, college ready high school students from nontraditional backgrounds—women, ethnic minorities, first-generation-to-college students, and those with financial need—often lack exposure to engineering, thus reducing their likelihood to pursue a career in this field. To create engineering learning experiences that can be expanded to a traditional high school science classroom, the Young Engineers Shape the World program at Arizona State University was consulted. The Young Engineers Shape the World program encourages women, notably the most underrepresented group in the engineering field, as well as other students of diverse backgrounds, to pursue engineering. The goal of this effort was to create a 3-contact hour chemical engineering based learning experience to help students in grades 10-11 learn about an application of chemical engineering. Using knowledge of chemical engineering, a soil pH testing activity was created, simulating a typical high school chemistry science experiment. In addition to measuring pH, students were asked to build a modern garden that contained a physical barrier that could protect the garden from acid rain while still allowing sunlight to reach the plant. Student feedback was collected in the form of an experience evaluation survey after each experience. Students found that the soil-moisture quality testing and design of a protective barrier was engaging. However, an iterative curriculum redesign-implement-evaluate effort is needed to arrive at a robust chemical engineering based design learning experience.
ContributorsOtis, Timothy Kevin (Author) / Ganesh, Tirupalavanam (Thesis director) / Schoepf, Jared (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132400-Thumbnail Image.png
Description
The Honors Creative Project evolved drastically from start to finish, despite its origin remaining the same. My core goal in this project was to connect two seemingly mutually exclusive aspects of my life, engineering and dance. After conducting an IRB study and using data from my own personal experiences, I

The Honors Creative Project evolved drastically from start to finish, despite its origin remaining the same. My core goal in this project was to connect two seemingly mutually exclusive aspects of my life, engineering and dance. After conducting an IRB study and using data from my own personal experiences, I was able to see how dance had in fact made me a better engineer. There were skills that I gained and learned in dance that were directly applicable to engineering, and I believe will be critical to my success as an engineer. As the focal point of the project angled towards myself, I had to look deeply into who I am and how I reached this point. I conducted self-reflections on various aspects of my current life and also on the struggles and hardships I overcame during my years at ASU. From these reflections, I learned a lot about myself and how my personal identity has evolved. This identity evolution became the backbone behind my thesis defense. I took my research and self-reflections and designed a series of artwork that I personally designed and painted myself. I my engineering side to conduct the research and collect the data, and then used my artistic side to present my findings to the public in a way that attracted and audience and caused others to reflect upon their own identities.
ContributorsArizmendi, Romann Fuentes (Author) / Olarte, David (Thesis director) / Welz, Matt (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132414-Thumbnail Image.png
Description
A common design of multi-agent robotic systems requires a centralized master node, which coordinates the actions of all the agents. The multi-agent system designed in this project enables coordination between the robots and reduces the dependence on a single node in the system. This design change reduces the complexity of

A common design of multi-agent robotic systems requires a centralized master node, which coordinates the actions of all the agents. The multi-agent system designed in this project enables coordination between the robots and reduces the dependence on a single node in the system. This design change reduces the complexity of the central node, and makes the system more adaptable to changes in its topology. The final goal of this project was to have a group of robots collaboratively claim positions in pre-defined formations, and navigate to the position using pose data transmitted by a localization server.
Planning coordination between robots in a multi-agent system requires each robot to know the position of the other robots. To address this, the localization server tracked visual fiducial markers attached to the robots and relayed their pose to every robot at a rate of 20Hz using the MQTT communication protocol. The robots used this data to inform a potential fields path planning algorithm and navigate to their target position.
This project was unable to address all of the challenges facing true distributed multi-agent coordination and needed to make concessions in order to meet deadlines. Further research would focus on shoring up these deficiencies and developing a more robust system.
ContributorsThibeault, Quinn (Author) / Meuth, Ryan (Thesis director) / Chen, Yinong (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132421-Thumbnail Image.png
Description
The objective of this paper is to find and describe trends in the fast Fourier transformed accelerometer data that can be used to predict the mechanical failure of large vacuum pumps used in industrial settings, such as providing drinking water. Using three-dimensional plots of the data, this paper suggests how

The objective of this paper is to find and describe trends in the fast Fourier transformed accelerometer data that can be used to predict the mechanical failure of large vacuum pumps used in industrial settings, such as providing drinking water. Using three-dimensional plots of the data, this paper suggests how a model can be developed to predict the mechanical failure of vacuum pumps.
ContributorsHalver, Grant (Author) / Taylor, Tom (Thesis director) / Konstantinos, Tsakalis (Committee member) / Fricks, John (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132295-Thumbnail Image.png
Description
This project report contains the design of a low-cost structural model of a residential structure in the City of Phoenix, AZ. The structural unit will be part of a residential area in Ahwatukee Foothills Village located just south of South Mountain. The residential structure is 3600 square feet and

This project report contains the design of a low-cost structural model of a residential structure in the City of Phoenix, AZ. The structural unit will be part of a residential area in Ahwatukee Foothills Village located just south of South Mountain. The residential structure is 3600 square feet and consists of three bedrooms (including the master bedroom), two bathrooms (including the master bathroom), a 2-car garage, laundry room, kitchen, dining room, and a living room. There are two elevation options (A & B) for the roof framing plan. Elevation A includes a straight forward truss package consisting of two truss designs with no hip or girder trusses. Elevation B includes a more complex truss package which includes girder trusses, hip trusses, and corner jacks. Within both elevations, the trusses run perpendicular to the ridge of the structure as displayed in the Architectural Floor Plan (see Figure 4) with the exception of the hip trusses and corner jacks in Elevation B.

The design objective is to meet all safety specifications while minimizing the total cost of members and member connections. The design also aims to streamline the construction time and resources by using standard member cross section dimensions. This residential building report is carried out in accordance with the City of Phoenix standards and follows the ASCE7-10 code for the dead and live load combinations and wind pressures. This report also references the National Design Specifications (NDS) 2005 for the column design. HT Consulting Group is excited to create a safe and sustainable development for the residents within Ahwatukee Foothills Village.
ContributorsHerrera-Theut, Joseph James (Author) / Ward, Kristen (Thesis director) / Morgan, John (Committee member) / Civil, Environmental and Sustainable Eng Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132203-Thumbnail Image.png
Description
This creative project is a children’s book designed to teach young readers about engineering through a fictional story about a group of children creating a robot for their school’s show-and-tell. The story aims to teach engineering principles to children in a lighthearted and entertaining form, narrating notions such as the

This creative project is a children’s book designed to teach young readers about engineering through a fictional story about a group of children creating a robot for their school’s show-and-tell. The story aims to teach engineering principles to children in a lighthearted and entertaining form, narrating notions such as the design process, prototyping, specialty fields, and repurposing. Other principles such as learning patience, compromise and teamwork are also conveyed throughout the plot details. Small life lessons that transcend the realm of engineering are also embodied throughout. The plot of the story is a young girl who goes to visit her grandfather who is a garage tinkerer with a love of spare parts. He tells her about his job as a robotics engineer, and she loves it. She goes and tells her friends who decide they want to make a robot for show-and-tell at school. The grandfather agrees to help them build a robot and thus the group of kids are walked through the engineering design process, learning new things (and specialization) along the way. The story ends by revealing that the whole story was a flashback the main character was having as she is about to start her first day at an engineering firm.
ContributorsReed, Shelby Marie (Author) / Oberle, Eric (Thesis director) / Williams, Wendy (Committee member) / Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132162-Thumbnail Image.png
Description
In a society that is becoming more technologically driven, it is important to have people to design, test, and build new things in order for society to progress. This is oftentimes the role of an engineer. However, engineering school is not easy, and engineering students don’t always make it all

In a society that is becoming more technologically driven, it is important to have people to design, test, and build new things in order for society to progress. This is oftentimes the role of an engineer. However, engineering school is not easy, and engineering students don’t always make it all the way through school to get an engineering job. This thesis is an in-depth analysis of an engineering student’s path - from choosing engineering as a major to ultimately transitioning into a full-time engineering job. It will do this by covering (1) what engineering is and what career opportunities exist within the discipline, (2) common pitfalls that students may encounter while going through engineering school, (3) how to get an engineering job in industry, and (4) how to appropriately transition into an industry job using the skills from engineering school. While talking about what engineering is and what career opportunities exist, this thesis will discuss engineering as a profession, the ABET accreditation board, and careers in industry vs academia. As part of common pitfalls that engineering students face, this thesis will discuss tenure track, theory vs reality, cooperative learning, and misconceptions about engineering. In order to talk about how to get an industry job, this thesis will discuss the impact of grades, relevant experience, communication, personal branding, and industry options. Finally, while talking about effectively transitioning into industry, this thesis will discuss understanding the skills gained from engineering school, the different roles in industry, and how to appropriately apply those skills. Ultimately this thesis aims to be a resource for students interested in engineering so that they can understand how to successfully make it through school and move into the work force effectively.
ContributorsJordan, Arminta Claire (Author) / Takahashi, Timothy (Thesis director) / Zhu, Haolin (Committee member) / Mechanical and Aerospace Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05