Matching Items (19)
Filtering by

Clear all filters

148001-Thumbnail Image.png
Description

High-entropy alloys possessing mechanical, chemical, and electrical properties that far exceed those of conventional alloys have the potential to make a significant impact on many areas of engineering. Identifying element combinations and configurations to form these alloys, however, is a difficult, time-consuming, computationally intensive task. Machine learning has revolutionized many

High-entropy alloys possessing mechanical, chemical, and electrical properties that far exceed those of conventional alloys have the potential to make a significant impact on many areas of engineering. Identifying element combinations and configurations to form these alloys, however, is a difficult, time-consuming, computationally intensive task. Machine learning has revolutionized many different fields due to its ability to generalize well to different problems and produce computationally efficient, accurate predictions regarding the system of interest. In this thesis, we demonstrate the effectiveness of machine learning models applied to toy cases representative of simplified physics that are relevant to high-entropy alloy simulation. We show these models are effective at learning nonlinear dynamics for single and multi-particle cases and that more work is needed to accurately represent complex cases in which the system dynamics are chaotic. This thesis serves as a demonstration of the potential benefits of machine learning applied to high-entropy alloy simulations to generate fast, accurate predictions of nonlinear dynamics.

ContributorsDaly, John H (Author) / Ren, Yi (Thesis director) / Zhuang, Houlong (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
135702-Thumbnail Image.png
Description
A method has been developed that employs both procedural and optimization algorithms to adaptively slice CAD models for large-scale additive manufacturing (AM) applications. AM, the process of joining material layer by layer to create parts based on 3D model data, has been shown to be an effective method for quickly

A method has been developed that employs both procedural and optimization algorithms to adaptively slice CAD models for large-scale additive manufacturing (AM) applications. AM, the process of joining material layer by layer to create parts based on 3D model data, has been shown to be an effective method for quickly producing parts of a high geometric complexity in small quantities. 3D printing, a popular and successful implementation of this method, is well-suited to creating small-scale parts that require a fine layer resolution. However, it starts to become impractical for large-scale objects due to build volume and print speed limitations. The proposed layered manufacturing technique builds up models from layers of much thicker sheets of material that can be cut on three-axis CNC machines and assembled manually. Adaptive slicing techniques were utilized to vary layer thickness based on surface complexity to minimize both the cost and error of the layered model. This was realized as a multi-objective optimization problem where the number of layers used represented the cost and the geometric difference between the sliced model and the CAD model defined the error. This problem was approached with two different methods, one of which was a procedural process of placing layers from a set of discrete thicknesses based on the Boolean Exclusive OR (XOR) area difference between adjacent layers. The other method implemented an optimization solver to calculate the precise thickness of each layer to minimize the overall volumetric XOR difference between the sliced and original models. Both methods produced results that help validate the efficiency and practicality of the proposed layered manufacturing technique over existing AM technologies for large-scale applications.
ContributorsStobinske, Paul Anthony (Author) / Ren, Yi (Thesis director) / Bucholz, Leonard (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
132513-Thumbnail Image.png
Description
In this research, the effect of the crystal structure of the parent phase on the morphology of nanoporous gold is explored. Specifically, Cu-Au alloys are studied. For this experiment, Cu0.75Au0.25 is heat treated to achieve an ordered phase Cu3Au and a disordered random solid solution, face centered cubic, Cu0.75Au0.25 phase,

In this research, the effect of the crystal structure of the parent phase on the morphology of nanoporous gold is explored. Specifically, Cu-Au alloys are studied. For this experiment, Cu0.75Au0.25 is heat treated to achieve an ordered phase Cu3Au and a disordered random solid solution, face centered cubic, Cu0.75Au0.25 phase, which are then dealloyed to form nanoporous gold (NPG). Using a morphology digital image analysis software called AQUAMI, SEM images of the NPG morphology were characterized to collect data on the ligament length, ligament diameter, porosity size, etc. of the samples. It was determined that the NPG formed from the ordered parent phase had an average ligament diameter that was 10 nm larger than the NPG formed from the disordered parent phase. This may be due to the ordered crystal structure allowing for faster gold diffusion and coarsening resulting in an increased average ligament size. Further future work is needed in order to obtain further evidence to support this hypothesis.
ContributorsTse, Ariana Yusof (Author) / Sieradzki, Karl (Thesis director) / Wang, Qing Hua (Committee member) / Materials Science and Engineering Program (Contributor) / Walter Cronkite School of Journalism & Mass Comm (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132569-Thumbnail Image.png
Description
This paper discusses the possibility of utilizing 2D molybdenum disulfide (MoS2) as a nanozyme to detect dopamine colorimetric assays, first by detecting color change in liquid solutions due to oxidation and then second on paper-based assays. MoS2 samples dispersed in methylcellulose (MC) solution were prepared using liquid-phase exfoliation through sonication.

This paper discusses the possibility of utilizing 2D molybdenum disulfide (MoS2) as a nanozyme to detect dopamine colorimetric assays, first by detecting color change in liquid solutions due to oxidation and then second on paper-based assays. MoS2 samples dispersed in methylcellulose (MC) solution were prepared using liquid-phase exfoliation through sonication. The dopamine (DOPA) and hydrogen peroxide (H¬¬2O2) solutions were prepared separately in specific concentrations. The solutions were mixed in a well plate and colorimetric results were analyzed by a plate reader, revealing a quantitative relationship between dopamine concentration and absorbance. Subsequent testing was conducted using paper assays, where combined solutions of DOPA and H2O2 were dropped onto paper with printed wax wells that contained dried MoS2. An analysis of the color change was conducted using a smartphone application called Color Grab to detect the red, green, and blue (RGB) values. Plotting the RGB results across the dopamine concentrations revealed a positively correlated relationship between the two factors, suggesting that a predictive model could be developed to predict dopamine concentrations based on measured colorimetric values.
ContributorsNalla, Akshay (Co-author, Co-author) / Wang, Qing Hua (Thesis director) / Green, Alexander (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Materials Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132870-Thumbnail Image.png
Description
The standard for hybrid fuel grains is Hydroxyl-terminated polybutadiene (HTPB). With the advances in additive manufacturing, the promise of 3D printed fuel grains has become a possibility. Yet, 3D printed grains do not have as good of a regression rate as the casted HTPB grains. However, with 3D printing, the

The standard for hybrid fuel grains is Hydroxyl-terminated polybutadiene (HTPB). With the advances in additive manufacturing, the promise of 3D printed fuel grains has become a possibility. Yet, 3D printed grains do not have as good of a regression rate as the casted HTPB grains. However, with 3D printing, the core of these grains can be printed to maximize surface area in contact with the oxidizer. The goal of this research is to print hybrid rocket fuel grains with various core geometries and test them on a small-scale hybrid test stand. While the hot fires are still under testing at the time of this abstract, the manufacturing posed an interesting outcome, being more time intensive than expected, contradicting the initial hypothesis of faster manufacturing. Future endeavors will continue research into the cores of the 3D printed grains, possible multi-material made grains and creating core structures for HTPB grains from 3D printed materials.
ContributorsRust, Daniel William Yun Jin (Author) / Rajadas, John (Thesis director) / Taconi, Carolyn (Committee member) / Materials Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132909-Thumbnail Image.png
Description
This thesis details the design and construction of a torque-controlled robotic gripper for use with the Pheeno swarm robotics platform. This project required expertise from several fields of study including: robotic design, programming, rapid prototyping, and control theory. An electronic Inertial Measurement Unit and a DC Motor were both used

This thesis details the design and construction of a torque-controlled robotic gripper for use with the Pheeno swarm robotics platform. This project required expertise from several fields of study including: robotic design, programming, rapid prototyping, and control theory. An electronic Inertial Measurement Unit and a DC Motor were both used along with 3D printed plastic components and an electronic motor control board to develop a functional open-loop controlled gripper for use in collective transportation experiments. Code was developed that effectively acquired and filtered rate of rotation data alongside other code that allows for straightforward control of the DC motor through experimentally derived relationships between the voltage applied to the DC motor and the torque output of the DC motor. Additionally, several versions of the physical components are described through their development.
ContributorsMohr, Brennan (Author) / Berman, Spring (Thesis director) / Ren, Yi (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / School for Engineering of Matter,Transport & Enrgy (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
133533-Thumbnail Image.png
Description
This study analyzes mechanical properties of additively manufactured plastic materials produced in a conventional 3D printer. This topic has generally been studied in controlled scenarios, and this study aims to reflect the properties seen by consumers. Layered prints are inherently anisotropic due to the direction of the layers and associated

This study analyzes mechanical properties of additively manufactured plastic materials produced in a conventional 3D printer. This topic has generally been studied in controlled scenarios, and this study aims to reflect the properties seen by consumers. Layered prints are inherently anisotropic due to the direction of the layers and associated weaknesses or stress concentrators. Thus, the ultimate strength and elastic modulus of plastic specimens produced using default settings are compared based on print orientation angle, and trends are observed. When a specimen is parallel to the build plate, it tends to have ultimate strength and elastic modulus near the published bulk values of 13.2MPa and 404-710MPa, but these values tend to decrease as the print angle increases.
Created2018-05
135326-Thumbnail Image.png
Description
The purpose of this honors project is to analyze the difference between different powder separation techniques, and their suitability for my capstone project – ‘Effect of Powder Reuse on DMLS (Direct Metal Laser Sintering) Product Integrity’. Due to the nature of my capstone project, my group needs to characterize foreign

The purpose of this honors project is to analyze the difference between different powder separation techniques, and their suitability for my capstone project – ‘Effect of Powder Reuse on DMLS (Direct Metal Laser Sintering) Product Integrity’. Due to the nature of my capstone project, my group needs to characterize foreign contaminants in IN 718 (Ni-based superalloy) powder with a mean diameter around 40um. In order to clearly analyze the contaminants and recycle useful IN 718 powders, powder separation is favorable since the filtered samples will be much easier to characterize rather than inspect all the powders at once under microscope. By conducting literature review, I found that powder separation is commonly used in Geology, and Chemistry department. To screen which combination of techniques could be the best for my project, I have consulted several research specialists, obtained adequate knowledge about powder separation. Accordingly, I will summarize the pros and cons of each method with regard the specific project that I am working on, and further explore the impacts of each method under economical, societal, and environmental considerations. Several powder separation techniques will be discussed in details in the following sections, including water elutriation, settling column, magnetic separation and centrifugation. In addition to these methods, sieving, water tabling and panning will be briefly introduced. After detailed comparison, I found that water elutriation is the most efficient way to purity IN718 powder for reuse purpose, and recovery rate is as high as 70%, which could result in a significant reduction in the manufacturing cost for Honeywell since currently Honeywell only use virgin powders to build parts, and 90% of the leftover powders are discarded.
ContributorsLuo, Zheyu (Author) / Adams, James (Thesis director) / Tasooji, Amaneh (Committee member) / Materials Science and Engineering Program (Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135333-Thumbnail Image.png
Description
Honeywell is currently extending the reach of additive manufacturing (AM) in its product line and expects to produce as much as 40% of its inventory through AM in five years. Additive manufacturing itself is expected to grow into a $3.1 billion dollar industry in the next 5 to 10 years.

Honeywell is currently extending the reach of additive manufacturing (AM) in its product line and expects to produce as much as 40% of its inventory through AM in five years. Additive manufacturing itself is expected to grow into a $3.1 billion dollar industry in the next 5 to 10 years. Reusing IN 718 powder, a nickel-based super alloy metal powder, is an ideal option to reduce costs as well as reduce waste because it can be used with additive manufacturing, but the main obstacles are lack of procedure standardization and product quality assurances from this process. The goal of the capstone project, "Effect of Powder Reuse on DMLS (Direct Metal Laser Sintering) Product Integrity," is to create a powder characterization protocol in order to determine if the IN 718 powder can be reused and what effect the IN 718 reused powder has on the mechanical properties of the products Honeywell fabricates. To provide context and impact of this capstone project, this paper serves to identify the benefits of AM for Honeywell and the cost effectiveness of reusing the powder versus using virgin powder every time. It was found that Honeywell's investment in AM is due to the cost effectiveness of AM, versatility in product design, and to ensure Honeywell remains competitive in the future. In terms of reducing expenses, reusing powder enables costs to be approximately 45% less than using virgin powder. With these key pieces of information, the motivations for this capstone project are understood to a fuller and more profound degree.
ContributorsQuigley, Elizabeth (Co-author) / Luo, Zheyu (Co-author) / Murella, Anoosha (Co-author) / Lee, Wey Lyn (Co-author) / Adams, James (Thesis director) / Tasooji, Amaneh (Committee member) / Materials Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135298-Thumbnail Image.png
Description
This project sought to analyze the effects of recycling Inconel 718 powder for Direct Metal Laser Sintering (DMSL) for additive manufacturing by testing low cycle fatigue tensile samples ranging from virgin to ten times recycled. Fracture generally occurs at the sample surface where persistent slip planes form and accumulate to

This project sought to analyze the effects of recycling Inconel 718 powder for Direct Metal Laser Sintering (DMSL) for additive manufacturing by testing low cycle fatigue tensile samples ranging from virgin to ten times recycled. Fracture generally occurs at the sample surface where persistent slip planes form and accumulate to cause a sudden fracture leading to signature markings for various phases of crack growth. Effects caused by contamination would be found in the first region of crack growth at the initiation site as the cause stress concentration. Tensile strength and fatigue life were compared to initiation site size found from fracture images obtained using scanning electron microscope imaging which found no significant deviations from the expected surface cracking and LCF region of slip plane buildups. Contamination was not found at any initiation site indicating that fracture life was not impacted by the amount of powder recycling. LCF life ranged from 60,000 to 250,000 which the majority experiencing fractures near 120,000 cyclic loadings. If defect effects were to be found than the low fatigue life sample would exhibit them however its fracture surface did not exhibit contamination but a slight increase in porosity found in the phase III cracking region. The In 718 powders were also analyzed to determine that the primary powder contaminates were brush fibers used to sweep away unused powders during processing however these were not seen in the final DMLS samples.
ContributorsLaws, Alec Ky (Author) / Tasooji, Amaneh (Thesis director) / Eylon, Daniel (Committee member) / Materials Science and Engineering Program (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05