Matching Items (26)
Filtering by

Clear all filters

153520-Thumbnail Image.png
Description
The Volume-of-Fluid method is a popular method for interface tracking in Multiphase applications within Computational Fluid Dynamics. To date there exists several algorithms for reconstruction of a geometric interface surface. Of these are the Finite Difference algorithm, Least Squares Volume-of-Fluid Interface Reconstruction Algorithm, LVIRA, and the Efficient Least Squares Volume-of-Fluid

The Volume-of-Fluid method is a popular method for interface tracking in Multiphase applications within Computational Fluid Dynamics. To date there exists several algorithms for reconstruction of a geometric interface surface. Of these are the Finite Difference algorithm, Least Squares Volume-of-Fluid Interface Reconstruction Algorithm, LVIRA, and the Efficient Least Squares Volume-of-Fluid Interface Reconstruction Algorithm, ELVIRA. Along with these geometric interface reconstruction algorithms, there exist several volume-of-fluid transportation algorithms. This paper will discuss two operator-splitting advection algorithms and an unsplit advection algorithm. Using these three interface reconstruction algorithms, and three advection algorithms, a comparison will be drawn to see how different combinations of these algorithms perform with respect to accuracy as well as computational expense.
ContributorsKedelty, Dominic (Author) / Herrmann, Marcus (Thesis advisor) / Huang, Huei-Ping (Committee member) / Chen, Kangping (Committee member) / Arizona State University (Publisher)
Created2015
153416-Thumbnail Image.png
Description
Due to decrease in fossil fuel levels, the world is shifting focus towards renewable sources of energy. With an annual average growth rate of 25%, wind is one of the foremost source of harnessing cleaner energy for production of electricity. Wind turbines have been developed to tap power from wind.

Due to decrease in fossil fuel levels, the world is shifting focus towards renewable sources of energy. With an annual average growth rate of 25%, wind is one of the foremost source of harnessing cleaner energy for production of electricity. Wind turbines have been developed to tap power from wind. As a single wind turbine is insufficient, multiple turbines are installed forming a wind farm. Generally, wind farms can have hundreds to thousands of turbines concentrated in a small region. There have been multiple studies centering the influence of weather on such wind farms, but no substantial research focused on how wind farms effect local climate. Technological advances have allowed development of commercial wind turbines with a power output greater than 7.58 MW. This has led to a reduction in required number of turbines and has optimized land usage. Hence, current research considers higher power density compared to previous works that relied on wind farm density of 2 to 4 W/m 2 . Simulations were performed using Weather Research and Forecasting software provided by NCAR. The region of simulation is Southern Oregon, with domains including both onshore and offshore wind farms. Unlike most previous works, where wind farms were considered to be on a flat ground, effects of topography have also been considered here. Study of seasonal effects over wind farms has provided better insight into changes in local wind direction. Analysis of mean velocity difference across wind farms at a height of 10m and 150m gives an understanding of wind velocity profiles. Results presented in this research tends to contradict earlier belief that velocity reduces throughout the farm. Large scale simulations have shown that sometimes, more than 50% of the farm can have an increased wind velocity of up to 1m/s

at an altitude of 10m.
ContributorsKadiyala, Yogesh Rao (Author) / Huang, Huei-Ping (Thesis advisor) / Rajagopalan, Jagannathan (Committee member) / Calhoun, Ronald (Committee member) / Arizona State University (Publisher)
Created2015
150341-Thumbnail Image.png
Description
A numerical study of incremental spin-up and spin-up from rest of a thermally- stratified fluid enclosed within a right circular cylinder with rigid bottom and side walls and stress-free upper surface is presented. Thermally stratified spin-up is a typical example of baroclinity, which is initiated by a sudden increase in

A numerical study of incremental spin-up and spin-up from rest of a thermally- stratified fluid enclosed within a right circular cylinder with rigid bottom and side walls and stress-free upper surface is presented. Thermally stratified spin-up is a typical example of baroclinity, which is initiated by a sudden increase in rotation rate and the tilting of isotherms gives rise to baroclinic source of vorticity. Research by (Smirnov et al. [2010a]) showed the differences in evolution of instabilities when Dirichlet and Neumann thermal boundary conditions were applied at top and bottom walls. Study of parametric variations carried out in this dissertation confirmed the instability patterns observed by them for given aspect ratio and Rossby number values greater than 0.5. Also results reveal that flow maintained axisymmetry and stability for short aspect ratio containers independent of amount of rotational increment imparted. Investigation on vorticity components provides framework for baroclinic vorticity feedback mechanism which plays important role in delayed rise of instabilities when Dirichlet thermal Boundary Conditions are applied.
ContributorsKher, Aditya Deepak (Author) / Chen, Kangping (Thesis advisor) / Huang, Huei-Ping (Committee member) / Herrmann, Marcus (Committee member) / Arizona State University (Publisher)
Created2011
150092-Thumbnail Image.png
Description
The evolution of single hairpin vortices and multiple interacting hairpin vortices are studied in direct numerical simulations of channel flow at Re-tau=395. The purpose of this study is to observe the effects of increased Reynolds number and varying initial conditions on the growth of hairpins and the conditions under which

The evolution of single hairpin vortices and multiple interacting hairpin vortices are studied in direct numerical simulations of channel flow at Re-tau=395. The purpose of this study is to observe the effects of increased Reynolds number and varying initial conditions on the growth of hairpins and the conditions under which single hairpins autogenerate hairpin packets. The hairpin vortices are believed to provide a unified picture of wall turbulence and play an important role in the production of Reynolds shear stress which is directly related to turbulent drag. The structures of the initial three-dimensional vortices are extracted from the two-point spatial correlation of the fully turbulent direct numerical simulation of the velocity field by linear stochastic estimation and embedded in a mean flow having the profile of the fully turbulent flow. The Reynolds number of the present simulation is more than twice that of the Re-tau=180 flow from earlier literature and the conditional events used to define the stochastically estimated single vortex initial conditions include a number of new types of events such as quasi-streamwise vorticity and Q4 events. The effects of parameters like strength, asymmetry and position are evaluated and compared with existing results in the literature. This study then attempts to answer questions concerning how vortex mergers produce larger scale structures, a process that may contribute to the growth of length scale with increasing distance from the wall in turbulent wall flows. Multiple vortex interactions are studied in detail.
ContributorsParthasarathy, Praveen Kumar (Author) / Adrian, Ronald (Thesis advisor) / Huang, Huei-Ping (Committee member) / Herrmann, Marcus (Committee member) / Arizona State University (Publisher)
Created2011
156187-Thumbnail Image.png
Description
This thesis focuses on studying the interaction between floating objects and an air-water flow system driven by gravity. The system consists of an inclined channel in which a gravity driven two phase flow carries a series of floating solid objects downstream. Numerical simulations of such a system requires the solution

This thesis focuses on studying the interaction between floating objects and an air-water flow system driven by gravity. The system consists of an inclined channel in which a gravity driven two phase flow carries a series of floating solid objects downstream. Numerical simulations of such a system requires the solution of not only the basic Navier-Stokes equation but also dynamic interaction between the solid body and the two-phase flow. In particular, this requires embedding of dynamic mesh within the two-phase flow. A computational fluid dynamics solver, ANSYS fluent, is used to solve this problem. Also, the individual components for these simulations are already available in the solver, few examples exist in which all are combined. A series of simulations are performed by varying the key parameters, including density of floating objects and mass flow rate at the inlet. The motion of the floating objects in those simulations are analyzed to determine the stability of the coupled flow-solid system. The simulations are successfully performed over a broad range of parametric values. The numerical framework developed in this study can potentially be used in applications, especially in assisting the design of similar gravity driven systems for transportation in manufacturing processes. In a small number of the simulations, two kinds of numerically instability are observed. One is characterized by a sudden vertical acceleration of the floating object due to a strong imbalance of the force acting on the body, which occurs when the mass flow of water is weak. The other is characterized by a sudden vertical movement of air-water interface, which occurs when two floating objects become too close together. These new types of numerical instability deserve future studies and clarifications. This study is performed only for a 2-D system. Extension of the numerical framework to a full 3-D setting is recommended as future work.
ContributorsMangavelli, Sai Chaitanya (Author) / Huang, Huei-Ping (Thesis advisor) / Kim, Jeonglae (Committee member) / Forzani, Erica (Committee member) / Arizona State University (Publisher)
Created2018
156327-Thumbnail Image.png
Description
Energy production is driven by economic needs, which sometimes results in the environment and wildlife being an afterthought. Unfortunately, many animals are killed as a result of flying too close to wind turbines, and the addition of animal deterrent devices are a promising alternative. This thesis seeks to provide a

Energy production is driven by economic needs, which sometimes results in the environment and wildlife being an afterthought. Unfortunately, many animals are killed as a result of flying too close to wind turbines, and the addition of animal deterrent devices are a promising alternative. This thesis seeks to provide a solution as a part of post- construction considerations regarding wildlife and wind turbine interactions through the introduction of a blade mounted ecological device. After testing the hypothesis, the data revealed the device is effective for increasing power output when placed at the root, middle, and tip of the blade. The middle position yielded the lowest increase at all speeds tested. The device was designed and attached to blades along the estimated line of separation. The blades were then mounted on a tower and tested with wind speed as an input and power as an output. The data was analyzed by fixing speed as a parameter and then looking at the distribution of the power output data. A comparison of blades with and without the device demonstrates a potential for increasing power output by 144% when the device is attached at the blade’s root, 7.5% in the middle, and 21% near the tip. The analysis for this study was descoped due to the constraints of the system to be scaled up. As such, this analysis will hold for turbines with a blade length of no more than approximately eight feet. Blades of this type would be used in single building energy grid supplement turbines or turbines in areas with power requirements of equal or less than 1kW per turbine installed. Single building energy grid supplement turbines are most often mounted to the tops of buildings and take advantage of higher speeds of wind at those heights. As the ecological devices are designed to be similar to vortex generators, which have been tested on large blades, their addition to large blades could prove to have a similar effect.

Keywords: Wind turbine ecosystem, post-construction turbine considerations, wildlife deterrents
ContributorsBooth, Stephanie (Author) / Trimble, Steve (Thesis advisor) / Middleton, James (Thesis advisor) / Huang, Huei-Ping (Committee member) / Arizona State University (Publisher)
Created2018
Description
Over the past three decades, particle image velocimetry (PIV) has been continuously growing to become an informative and robust experimental tool for fluid mechanics research. Compared to the early stage of PIV development, the dynamic range of PIV has been improved by about an order of magnitude (Adrian, 2005; Westerweel

Over the past three decades, particle image velocimetry (PIV) has been continuously growing to become an informative and robust experimental tool for fluid mechanics research. Compared to the early stage of PIV development, the dynamic range of PIV has been improved by about an order of magnitude (Adrian, 2005; Westerweel et al., 2013). Further improvement requires a breakthrough innovation, which constitutes the main motivation of this dissertation. N-pulse particle image velocimetry-accelerometry (N-pulse PIVA, where N>=3) is a promising technique to this regard. It employs bursts of N pulses to gain advantages in both spatial and temporal resolution. The performance improvement by N-pulse PIVA is studied using particle tracking (i.e. N-pulse PTVA), and it is shown that an enhancement of at least another order of magnitude is achievable. Furthermore, the capability of N-pulse PIVA to measure unsteady acceleration and force is demonstrated in the context of an oscillating cylinder interacting with surrounding fluid. The cylinder motion, the fluid velocity and acceleration, and the fluid force exerted on the cylinder are successfully measured. On the other hand, a key issue of multi-camera registration for the implementation of N-pulse PIVA is addressed with an accuracy of 0.001 pixel. Subsequently, two applications of N-pulse PTVA to complex flows and turbulence are presented. A novel 8-pulse PTVA analysis was developed and validated to accurately resolve particle unsteady drag in post-shock flows. It is found that the particle drag is substantially elevated from the standard drag due to flow unsteadiness, and a new drag correlation incorporating particle Reynolds number and unsteadiness is desired upon removal of the uncertainty arising from non-uniform particle size. Next, the estimation of turbulence statistics utilizes the ensemble average of 4-pulse PTV data within a small domain of an optimally determined size. The estimation of mean velocity, mean velocity gradient and isotropic dissipation rate are presented and discussed by means of synthetic turbulence, as well as a tomographic measurement of turbulent boundary layer. The results indicate the superior capability of the N-pulse PTV based method to extract high-spatial-resolution high-accuracy turbulence statistics.
ContributorsDing, Liuyang (Author) / Adrian, Ronald J (Thesis advisor) / Frakes, David (Committee member) / Herrmann, Marcus (Committee member) / Huang, Huei-Ping (Committee member) / Peet, Yulia (Committee member) / Arizona State University (Publisher)
Created2018
157173-Thumbnail Image.png
Description
Understanding and predicting climate changes at the urban scale have been an important yet challenging problem in environmental engineering. The lack of reliable long-term observations at the urban scale makes it difficult to even assess past climate changes. Numerical modeling plays an important role in filling the gap of observation

Understanding and predicting climate changes at the urban scale have been an important yet challenging problem in environmental engineering. The lack of reliable long-term observations at the urban scale makes it difficult to even assess past climate changes. Numerical modeling plays an important role in filling the gap of observation and predicting future changes. Numerical studies on the climatic effect of desert urbanization have focused on basic meteorological fields such as temperature and wind. For desert cities, urban expansion can lead to substantial changes in the local production of wind-blown dust, which have implications for air quality and public health. This study expands the existing framework of numerical simulation for desert urbanization to include the computation of dust generation related to urban land-use changes. This is accomplished by connecting a suite of numerical models, including a meso-scale meteorological model, a land-surface model, an urban canopy model, and a turbulence model, to produce the key parameters that control the surface fluxes of wind-blown dust. Those models generate the near-surface turbulence intensity, soil moisture, and land-surface properties, which are used to determine the dust fluxes from a set of laboratory-based empirical formulas. This framework is applied to a series of simulations for the desert city of Erbil across a period of rapid urbanization. The changes in surface dust fluxes associated with urbanization are quantified. An analysis of the model output further reveals the dependence of surface dust fluxes on local meteorological conditions. Future applications of the models to environmental prediction are discussed.
ContributorsTahir, Sherzad Tahseen (Author) / Huang, Huei-Ping (Thesis advisor) / Phelan, Patrick (Committee member) / Herrmann, Marcus (Committee member) / Chen, Kangping (Committee member) / Clarke, Amanda (Committee member) / Arizona State University (Publisher)
Created2019
Description
The goal of this paper was to do an analysis of two-dimensional unsplit mass and momentum conserving Finite Volume Methods for Advection for Volume of Fluid Fields with interfaces and validating their rates of convergence. Specifically three unsplit transport methods and one split transport method were amalgamated individually with four

The goal of this paper was to do an analysis of two-dimensional unsplit mass and momentum conserving Finite Volume Methods for Advection for Volume of Fluid Fields with interfaces and validating their rates of convergence. Specifically three unsplit transport methods and one split transport method were amalgamated individually with four Piece-wise Linear Reconstruction Schemes (PLIC) i.e. Unsplit Eulerian Advection (UEA) by Owkes and Desjardins (2014), Unsplit Lagrangian Advection (ULA) by Yang et al. (2010), Split Lagrangian Advection (SLA) by Scardovelli and Zaleski (2003) and Unsplit Averaged Eulerian-Lagrangian Advection (UAELA) with two Finite Difference Methods by Parker and Youngs (1992) and two Error Minimization Methods by Pilliod Jr and Puckett (2004). The observed order of accuracy was first order in all cases except when unsplit methods and error minimization methods were used consecutively in each iteration, which resulted in second-order accuracy on the shape error convergence. The Averaged Unsplit Eulerian-Lagrangian Advection (AUELA) did produce first-order accuracy but that was due to a temporal error in the numerical setup. The main unsplit methods, Unsplit Eulerian Advection (UEA) and Unsplit Lagrangian Advection (ULA), preserve mass and momentum and require geometric clipping to solve two-phase fluid flows. The Unsplit Lagrangian Advection (ULA) can allow for small divergence in the velocity field perhaps saving time on the iterative solver of the variable coefficient Poisson System.
ContributorsAnsari, Adil (M.S.) (Author) / Herrmann, Marcus (Thesis advisor) / Peet, Yulia (Committee member) / Huang, Huei-Ping (Committee member) / Arizona State University (Publisher)
Created2019
Description
Rapid expansion of dense beds of fine, spherical particles subjected to rapid depressurization is studied in a vertical shock tube. As the particle bed is unloaded, a high-speed video camera captures the dramatic evolution of the particle bed structure. Pressure transducers are used to measure the dynamic pressure changes during

Rapid expansion of dense beds of fine, spherical particles subjected to rapid depressurization is studied in a vertical shock tube. As the particle bed is unloaded, a high-speed video camera captures the dramatic evolution of the particle bed structure. Pressure transducers are used to measure the dynamic pressure changes during the particle bed expansion process. Image processing, signal processing, and Particle Image Velocimetry techniques, are used to examine the relationships between particle size, initial bed height, bed expansion rate, and gas velocities.

The gas-particle interface and the particle bed as a whole expand and evolve in stages. First, the bed swells nearly homogeneously for a very brief period of time (< 2ms). Shortly afterward, the interface begins to develop instabilities as it continues to rise, with particles nearest the wall rising more quickly. Meanwhile, the bed fractures into layers and then breaks down further into cellular-like structures. The rate at which the structural evolution occurs is shown to be dependent on particle size. Additionally, the rate of the overall bed expansion is shown to be dependent on particle size and initial bed height.

Taller particle beds and beds composed of smaller-diameter particles are found to be associated with faster bed-expansion rates, as measured by the velocity of the gas-particle interface. However, the expansion wave travels more slowly through these same beds. It was also found that higher gas velocities above the the gas-particle interface measured \textit{via} Particle Image Velocimetry or PIV, were associated with particle beds composed of larger-diameter particles. The gas dilation between the shocktube diaphragm and the particle bed interface is more dramatic when the distance between the gas-particle interface and the diaphragm is decreased-as is the case for taller beds.

To further elucidate the complexities of this multiphase compressible flow, simple OpenFOAM (Weller, 1998) simulations of the shocktube experiment were performed and compared to bed expansion rates, pressure fluctuations, and gas velocities. In all cases, the trends and relationships between bed height, particle diameter, with expansion rates, pressure fluctuations and gas velocities matched well between experiments and simulations. In most cases, the experimentally-measured bed rise rates and the simulated bed rise rates matched reasonably well in early times. The trends and overall values of the pressure fluctuations and gas velocities matched well between the experiments and simulations; shedding light on the effects each parameter has on the overall flow.
ContributorsZunino, Heather (Author) / Adrian, Ronald J (Thesis advisor) / Clarke, Amanda (Committee member) / Chen, Kangping (Committee member) / Herrmann, Marcus (Committee member) / Huang, Huei-Ping (Committee member) / Arizona State University (Publisher)
Created2019