Matching Items (44)
Filtering by

Clear all filters

151443-Thumbnail Image.png
Description
The focus of this investigation includes three aspects. First, the development of nonlinear reduced order modeling techniques for the prediction of the response of complex structures exhibiting "large" deformations, i.e. a geometrically nonlinear behavior, and modeled within a commercial finite element code. The present investigation builds on a general methodology,

The focus of this investigation includes three aspects. First, the development of nonlinear reduced order modeling techniques for the prediction of the response of complex structures exhibiting "large" deformations, i.e. a geometrically nonlinear behavior, and modeled within a commercial finite element code. The present investigation builds on a general methodology, successfully validated in recent years on simpler panel structures, by developing a novel identification strategy of the reduced order model parameters, that enables the consideration of the large number of modes needed for complex structures, and by extending an automatic strategy for the selection of the basis functions used to represent accurately the displacement field. These novel developments are successfully validated on the nonlinear static and dynamic responses of a 9-bay panel structure modeled within Nastran. In addition, a multi-scale approach based on Component Mode Synthesis methods is explored. Second, an assessment of the predictive capabilities of nonlinear reduced order models for the prediction of the large displacement and stress fields of panels that have a geometric discontinuity; a flat panel with a notch was used for this assessment. It is demonstrated that the reduced order models of both virgin and notched panels provide a close match of the displacement field obtained from full finite element analyses of the notched panel for moderately large static and dynamic responses. In regards to stresses, it is found that the notched panel reduced order model leads to a close prediction of the stress distribution obtained on the notched panel as computed by the finite element model. Two enrichment techniques, based on superposition of the notch effects on the virgin panel stress field, are proposed to permit a close prediction of the stress distribution of the notched panel from the reduced order model of the virgin one. A very good prediction of the full finite element results is achieved with both enrichments for static and dynamic responses. Finally, computational challenges associated with the solution of the reduced order model equations are discussed. Two alternatives to reduce the computational time for the solution of these problems are explored.
ContributorsPerez, Ricardo Angel (Author) / Mignolet, Marc (Thesis advisor) / Oswald, Jay (Committee member) / Spottswood, Stephen (Committee member) / Peralta, Pedro (Committee member) / Jiang, Hanqing (Committee member) / Arizona State University (Publisher)
Created2012
150547-Thumbnail Image.png
Description
This dissertation presents methods for addressing research problems that currently can only adequately be solved using Quality Reliability Engineering (QRE) approaches especially accelerated life testing (ALT) of electronic printed wiring boards with applications to avionics circuit boards. The methods presented in this research are generally applicable to circuit boards, but

This dissertation presents methods for addressing research problems that currently can only adequately be solved using Quality Reliability Engineering (QRE) approaches especially accelerated life testing (ALT) of electronic printed wiring boards with applications to avionics circuit boards. The methods presented in this research are generally applicable to circuit boards, but the data generated and their analysis is for high performance avionics. Avionics equipment typically requires 20 years expected life by aircraft equipment manufacturers and therefore ALT is the only practical way of performing life test estimates. Both thermal and vibration ALT induced failure are performed and analyzed to resolve industry questions relating to the introduction of lead-free solder product and processes into high reliability avionics. In chapter 2, thermal ALT using an industry standard failure machine implementing Interconnect Stress Test (IST) that simulates circuit board life data is compared to real production failure data by likelihood ratio tests to arrive at a mechanical theory. This mechanical theory results in a statistically equivalent energy bound such that failure distributions below a specific energy level are considered to be from the same distribution thus allowing testers to quantify parameter setting in IST prior to life testing. In chapter 3, vibration ALT comparing tin-lead and lead-free circuit board solder designs involves the use of the likelihood ratio (LR) test to assess both complete failure data and S-N curves to present methods for analyzing data. Failure data is analyzed using Regression and two-way analysis of variance (ANOVA) and reconciled with the LR test results that indicating that a costly aging pre-process may be eliminated in certain cases. In chapter 4, vibration ALT for side-by-side tin-lead and lead-free solder black box designs are life tested. Commercial models from strain data do not exist at the low levels associated with life testing and need to be developed because testing performed and presented here indicate that both tin-lead and lead-free solders are similar. In addition, earlier failures due to vibration like connector failure modes will occur before solder interconnect failures.
ContributorsJuarez, Joseph Moses (Author) / Montgomery, Douglas C. (Thesis advisor) / Borror, Connie M. (Thesis advisor) / Gel, Esma (Committee member) / Mignolet, Marc (Committee member) / Pan, Rong (Committee member) / Arizona State University (Publisher)
Created2012
151166-Thumbnail Image.png
Description
High Pressure Superheater 1 (HPSH1) is the first heat exchange tube bank inside the Heat Recovery Steam Generator (HRSG) to encounter exhaust flue gas from the gas turbine of a Combined Cycle Power Plant. Steam flowing through the HPSH1 gains heat from the flue gas prior to entering the steam

High Pressure Superheater 1 (HPSH1) is the first heat exchange tube bank inside the Heat Recovery Steam Generator (HRSG) to encounter exhaust flue gas from the gas turbine of a Combined Cycle Power Plant. Steam flowing through the HPSH1 gains heat from the flue gas prior to entering the steam turbine. During cold start-ups, rapid temperature changes in operating condition give rise to significant temperature gradients in the thick-walled components of HPSH1 (manifolds, links, and headers). These temperature gradients produce thermal-structural stresses in the components. The resulting high cycle fatigue is a major concern as this can lead to premature failure of the components. The main objective of this project was to address the thermal-structural stress field induced in HPSH1 during a typical cold start-up transient. To this end, computational fluid dynamics (CFD) was used to carry out the thermal-fluid analysis of HPSH1. The calculated temperature distributions in the component walls were the primary inputs for the finite element (FEA) model that performed structural analysis. Thermal-structural analysis was initially carried out at full-load steady state condition in order to gain confidence in the CFD and FEA methodologies. Results of the full-load steady state thermal-fluid analysis were found in agreement with the temperature values measured at specific locations on the outer surfaces of the inlet links and outlet manifold. It was found from the subsequent structural analysis that peak effective stresses were located at the connecting regions of the components and were well below the allowed stress values. Higher temperature differences were observed between the thick-walled HPSH1 components during the cold start-up transient as compared to the full-load steady state operating condition. This was because of the rapid temperature changes that occurred, especially in the steam temperature at the HPSH1 entry, and the different rates of heating or cooling for components with different wall thicknesses. Results of the transient thermal-fluid analysis will be used in future to perform structural analysis of the HPSH1. The developed CFD and FEA models are capable of analyzing various other transients (e.g., hot start-up and shut-down) and determine their influence on the durability of plant components.
ContributorsHardeep Singh (Author) / Roy, Ramendra P. (Thesis advisor) / Lee, Taewoo (Thesis advisor) / Mignolet, Marc (Committee member) / Arizona State University (Publisher)
Created2012
148502-Thumbnail Image.png
Description

Pelvic Circumferential Compression Devices (PCCDs), an important medical device when caring for patients with pelvic fractures, play a crucial role in the stabilization and reduction of the fracture. During pelvic fracture cases, control of internal bleeding through access to the femoral artery is of utmost importance. Current designs of PCCDs

Pelvic Circumferential Compression Devices (PCCDs), an important medical device when caring for patients with pelvic fractures, play a crucial role in the stabilization and reduction of the fracture. During pelvic fracture cases, control of internal bleeding through access to the femoral artery is of utmost importance. Current designs of PCCDs do not allow vital access to this artery and in attempts to gain access, medical professionals and emergency care providers choose to cut into the PCCDs or place them in suboptimal positions with unknown downstream effects. We researched the effects on surface pressure and the overall pressure distribution created by the PCCDs when they are modified or placed incorrectly on the patient. In addition, we investigated the effects of those misuses on pelvic fracture reduction, a key parameter in stabilizing the patient during critical care. We hypothesized that incorrectly placing or modifying the PCCD will result in increased surface pressure and decreased fracture reduction. Our mannequin studies show that for SAM Sling and T-POD, surface pressure increases if a PCCD is incorrectly placed or modified, in support of our hypothesis. However, opposite results occurred for the Pelvic Binder, where the correctly placed PCCD had higher surface pressure when compared to the incorrectly placed or modified PCCD. Additionally, pressure distribution was significantly affected by the modification of the PCCDs. The cadaver lab measurements show that modifying or incorrectly placing the PCCDs significantly limits their ability to reduce the pelvic fracture. These results suggest that while modifying or incorrectly placing PCCDs allows access to the femoral artery, there are potentially dangerous effects to the patient including increased surface pressures and limited fracture reduction.

ContributorsConley, Ian Patrick (Co-author) / Ryder, Madison (Co-author) / Vernon, Brent (Thesis director) / Bogert, James (Committee member) / Harrington Bioengineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
136509-Thumbnail Image.png
Description
The primary objective of this research project is to develop dual layered polymeric microparticles with a tunable delayed release profile. Poly(L-lactic acid) (PLA) and poly(lactic-co-glycolic acid) (PLGA) phase separate in a double emulsion process due to differences in hydrophobicity, which allows for the synthesis of double-walled microparticles with a PLA

The primary objective of this research project is to develop dual layered polymeric microparticles with a tunable delayed release profile. Poly(L-lactic acid) (PLA) and poly(lactic-co-glycolic acid) (PLGA) phase separate in a double emulsion process due to differences in hydrophobicity, which allows for the synthesis of double-walled microparticles with a PLA shell surrounding the PLGA core. The microparticles were loaded with bovine serum albumin (BSA) and different volumes of ethanol were added to the PLA shell phase to alter the porosity and release characteristics of the BSA. Different amounts of ethanol varied the total loading percentage of the BSA, the release profile, surface morphology, size distribution, and the localization of the protein within the particles. Scanning electron microscopy images detailed the surface morphology of the different particles. Loading the particles with fluorescently tagged insulin and imaging the particles through confocal microscopy supported the localization of the protein inside the particle. The study suggest that ethanol alters the release characteristics of the loaded BSA encapsulated in the microparticles supporting the use of a polar, protic solvent as a tool for tuning the delayed release profile of biological proteins.
ContributorsFauer, Chase Alexander (Author) / Stabenfeldt, Sarah (Thesis director) / Ankeny, Casey (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2015-05
135836-Thumbnail Image.png
Description
To supplement lectures, various resources are available to students; however, little research has been done to look systematically at which resources studies find most useful and the frequency at which they are used. We have conducted a preliminary study looking at various resources available in an introductory material science course

To supplement lectures, various resources are available to students; however, little research has been done to look systematically at which resources studies find most useful and the frequency at which they are used. We have conducted a preliminary study looking at various resources available in an introductory material science course over four semesters using a custom survey called the Student Resource Value Survey (SRVS). More specifically, the SRVS was administered before each test to determine which resources students use to do well on exams. Additionally, over the course of the semester, which resources students used changed. For instance, study resources for exams including the use of homework problems decreased from 81% to 50%, the utilization of teaching assistant for exam studying increased from 25% to 80%, the use of in class Muddiest Points for exam study increased form 28% to 70%, old exams and quizzes only slightly increased for exam study ranging from 78% to 87%, and the use of drop-in tutoring services provided to students at no charge decreased from 25% to 17%. The data suggest that students thought highly of peer interactions by using those resources more than tutoring centers. To date, no research has been completed looking at courses at the department level or a different discipline. To this end, we adapted the SRVS administered in material science to investigate resource use in thirteen biomedical engineering (BME) courses. Here, we assess the following research question: "From a variety of resources, which do biomedical engineering students feel addresses difficult concept areas, prepares them for examinations, and helps in computer-aided design (CAD) and programming the most and with what frequency?" The resources considered include teaching assistants, classroom notes, prior exams, homework problems, Muddiest Points, office hours, tutoring centers, group study, and the course textbook. Results varied across the four topical areas: exam study, difficult concept areas, CAD software, and math-based programming. When preparing for exams and struggling with a learning concept, the most used and useful resources were: 1) homework problems, 2) class notes and 3) group studying. When working on math-based programming (Matlab and Mathcad) as well as computer-aided design, the most used and useful resources were: 1) group studying, 2) engineering tutoring center, and 3) undergraduate teaching assistants. Concerning learning concepts and exams in the BME department, homework problems and class notes were considered some of the highest-ranking resources for both frequency and usefulness. When comparing to the pilot study in MSE, both BME and MSE students tend to highly favor peer mentors and old exams as a means of studying for exams at the end of the semester1. Because the MSE course only considered exams, we cannot make any comparisons to BME data concerning programming and CAD. This analysis has highlighted potential resources that are universally beneficial, such as the use of peer work, i.e. group studying, engineering tutoring center, and teaching assistants; however, we see differences by both discipline and topical area thereby highlighting the need to determine important resources on a class-by-class basis as well.
ContributorsMalkoc, Aldin (Author) / Ankeny, Casey (Thesis director) / Krause, Stephen (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
Description
The action/adventure game Grad School: HGH is the final, extended version of a BME Prototyping class project in which the goal was to produce a zombie-themed game that teaches biomedical engineering concepts. The gameplay provides fast paced, exciting, and mildly addicting rooms that the player must battle and survive through,

The action/adventure game Grad School: HGH is the final, extended version of a BME Prototyping class project in which the goal was to produce a zombie-themed game that teaches biomedical engineering concepts. The gameplay provides fast paced, exciting, and mildly addicting rooms that the player must battle and survive through, followed by an engineering puzzle that must be solved in order to advance to the next room. The objective of this project was to introduce the core concepts of BME to prospective students, rather than attempt to teach an entire BME curriculum. Based on user testing at various phases in the project, we concluded that the gameplay was engaging enough to keep most users' interest through the educational puzzles, and the potential for expanding this project to reach an even greater audience is vast.
ContributorsNitescu, George (Co-author) / Medawar, Alexandre (Co-author) / Spano, Mark (Thesis director) / LaBelle, Jeffrey (Committee member) / Guiang, Kristoffer (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
Description
Volume depletion can lead to migraines, dizziness, and significant decreases in a subject's ability to physically perform. A major cause of volume depletion is dehydration, or loss in fluids due to an imbalance in fluid intake to fluid excretion. Because proper levels of hydration are necessary in order to maintain

Volume depletion can lead to migraines, dizziness, and significant decreases in a subject's ability to physically perform. A major cause of volume depletion is dehydration, or loss in fluids due to an imbalance in fluid intake to fluid excretion. Because proper levels of hydration are necessary in order to maintain both short and long term health, the ability to monitor hydration levels is growing in clinical demand. Although devices capable of monitoring hydration level exist, these devices are expensive, invasive, or inaccurate and do not offer a continuous mode of measurement. The ideal hydration monitor for consumer use needs to be characterized by its portability, affordability, and accuracy. Also, this device would need to be noninvasive and offer continuous hydration monitoring in order to accurately assess fluctuations in hydration data throughout a specified time period. One particular method for hydration monitoring that fits the majority of these criteria is known as bioelectric impedance analysis (BIA). Although current devices using BIA do not provide acceptable levels of accuracy, portability, or continuity in data collection, BIA could potentially be modified to fit many, if not all, desired customer specifications. The analysis presented here assesses the viability of using BIA as a new standard in hydration level measurement. The analysis uses data collected from 22 subjects using an existing device that employs BIA. A regression derived for estimating TBW based on the parameters of age, weight, height, sex, and impedance is presented. Using impedance data collected for each subject, a regression was also derived for estimating impedance based on the factors of age, weight, height, and sex. The derived regression was then used to calculate a new impedance value for each subject, and these new impedance values were used to estimate TBW. Through a paired-t test between the TBW values derived by using the direct measurements versus the calculated measurements of impedance, the two samples were found to be comparable. Considerations for BIA as a noninvasive measurement of hydration are discussed.
ContributorsTenorio, Jorge Antonio (Author) / LaBelle, Jeffrey (Thesis director) / Pizziconi, Vincent (Committee member) / Spano, Mark (Committee member) / Barrett, The Honors College (Contributor) / W. P. Carey School of Business (Contributor) / Harrington Bioengineering Program (Contributor)
Created2013-05
148501-Thumbnail Image.png
Description

Pelvic Circumferential Compression Devices (PCCDs), an important medical device when caring for patients with pelvic fractures, play a crucial role in the stabilization and reduction of the fracture. During pelvic fracture cases, control of internal bleeding through access to the femoral artery is of utmost importance. Current designs of PCCDs

Pelvic Circumferential Compression Devices (PCCDs), an important medical device when caring for patients with pelvic fractures, play a crucial role in the stabilization and reduction of the fracture. During pelvic fracture cases, control of internal bleeding through access to the femoral artery is of utmost importance. Current designs of PCCDs do not allow vital access to this artery and in attempts to gain access, medical professionals and emergency care providers choose to cut into the PCCDs or place them in suboptimal positions with unknown downstream effects. We researched the effects on surface pressure and the overall pressure distribution created by the PCCDs when they are modified or placed incorrectly on the patient. In addition, we investigated the effects of those misuses on pelvic fracture reduction, a key parameter in stabilizing the patient during critical care. We hypothesized that incorrectly placing or modifying the PCCD will result in increased surface pressure and decreased fracture reduction. Our mannequin studies show that for SAM Sling and T-POD, surface pressure increases if a PCCD is incorrectly placed or modified, in support of our hypothesis. However, opposite results occurred for the Pelvic Binder, where the correctly placed PCCD had higher surface pressure when compared to the incorrectly placed or modified PCCD. Additionally, pressure distribution was significantly affected by the modification of the PCCDs. The cadaver lab measurements show that modifying or incorrectly placing the PCCDs significantly limits their ability to reduce the pelvic fracture. These results suggest that while modifying or incorrectly placing PCCDs allows access to the femoral artery, there are potentially dangerous effects to the patient including increased surface pressures and limited fracture reduction.

ContributorsRyder, Madison Taylor (Co-author) / Conley, Ian (Co-author) / Vernon, Brent (Thesis director) / Bogert, James (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
149424-Thumbnail Image.png
Description
A major concern in the operation of present-day gas turbine engines is the ingestion of hot mainstream gas into rotor-stator disk cavities of the high-pressure turbine stages. Although the engines require high gas temperature at turbine entry for good performance efficiency, the ingested gas shortens the lives of the cavity

A major concern in the operation of present-day gas turbine engines is the ingestion of hot mainstream gas into rotor-stator disk cavities of the high-pressure turbine stages. Although the engines require high gas temperature at turbine entry for good performance efficiency, the ingested gas shortens the lives of the cavity internals, particularly that of the rotor disks. Steps such as installing seals at the disk rims and injecting purge (secondary) air bled from the compressor discharge into the cavities are implemented to reduce the gas ingestion. Although there are advantages to the above-mentioned steps, the performance of a gas turbine engine is diminished by the purge air bleed-off. This then requires that the cavity sealing function be achieved with as low a purge air supply rate as possible. This, in turn, renders imperative an in-depth understanding of the pressure and velocity fields in the main gas path and within the disk cavities. In this work, experiments were carried out in a model 1.5-stage (stator-rotor-stator) axial air turbine to study the ingestion of main air into the aft, rotor-stator, disk cavity. The cavity featured rotor and stator rim seals with radial clearance and axial overlap and an inner labyrinth seal. First, time-average static pressure distribution was measured in the main gas path upstream and downstream of the rotor as well as in the cavity to ensure that a nominally steady run condition had been achieved. Main gas ingestion was determined by measuring the concentration distribution of tracer gas (CO2) in the cavity. To map the cavity fluid velocity field, particle image velocimetry was employed. Results are reported for two main air flow rates, two rotor speeds, and four purge air flow rates.
ContributorsJunnarkar, Nihal (Author) / Roy, Ramendra P (Thesis advisor) / Mignolet, Marc (Committee member) / Lee, Taewoo (Committee member) / Arizona State University (Publisher)
Created2010