Matching Items (30)
Filtering by

Clear all filters

151168-Thumbnail Image.png
Description
A system for illuminating a sample in situ with visible and UV light inside a transmission electron microscope was devised to study photocatalysts. There are many factors which must be considered when designing and building such a system. These include both mechanical, optical, and electron optical considerations. Some of the

A system for illuminating a sample in situ with visible and UV light inside a transmission electron microscope was devised to study photocatalysts. There are many factors which must be considered when designing and building such a system. These include both mechanical, optical, and electron optical considerations. Some of the restrictions posed by the electron microscope column are significant, and care must be taken not to degrade the microscope's electron optical performance, or to unduly restrict the other current capabilities of the microscope. The nature of these various design considerations is discussed in detail. A description of the system that has been added to the microscope at ASU, an FEI Tecnai F20 environmental transmission electron microscope is also given. The system includes a high brightness broadband light source with optical filters, a fiber to guide the light to the sample, and a system for precisely aligning the fiber tip. The spatial distribution and spectrum of the light reaching the sample has been characterized, and is described in detail.
ContributorsMiller, Benjamin (Author) / Crozier, Peter A. (Thesis advisor) / McCartney, Martha (Committee member) / Rez, Peter (Committee member) / Arizona State University (Publisher)
Created2012
148463-Thumbnail Image.png
Description

The increased shift towards environmentalism has brought notable attention to a universal excessive plastic consumption and subsequent plastic overload in landfills. Among these plastics, polyethylene terephthalate, more commonly known as PET, constitutes a large percentage of the waste that ends up in landfills. Material and chemical/thermal methods for recycling are

The increased shift towards environmentalism has brought notable attention to a universal excessive plastic consumption and subsequent plastic overload in landfills. Among these plastics, polyethylene terephthalate, more commonly known as PET, constitutes a large percentage of the waste that ends up in landfills. Material and chemical/thermal methods for recycling are both costly, and inefficient, which necessitates a more sustainable and cheaper alternative. The current study aims at fulfilling that role through genetic engineering of Bacillus subtilis with integration of genes from LCC, Ideonella sakaiensis, and Bacillus subtilis. The plasmid construction was done through restriction cloning. A recombinant plasmid for the expression of LCC was constructed, and transformed into Escherichia coli. Future experiments for this study should include redesigning of primers, with possible combination of signal peptides with genes during construct design, and more advanced assays for effective outcomes.

ContributorsKalscheur, Bethany Ann (Author) / Varman, Arul (Thesis director) / Andino, Jean (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
136282-Thumbnail Image.png
Description
Depletion of fossil fuel resources has led to the investigation of alternate feedstocks for and methods of chemical synthesis, in particular the use of E. coli biocatalysts to produce fine commodity chemicals from renewable glucose sources. Production of phenol, 2-phenylethanol, and styrene was investigated, in particular the limitation in yield

Depletion of fossil fuel resources has led to the investigation of alternate feedstocks for and methods of chemical synthesis, in particular the use of E. coli biocatalysts to produce fine commodity chemicals from renewable glucose sources. Production of phenol, 2-phenylethanol, and styrene was investigated, in particular the limitation in yield and accumulation that results from high product toxicity. This paper examines two methods of product toxicity mitigation: the use of efflux pumps and the separation of pathways which produce less toxic intermediates. A library of 43 efflux pumps from various organisms were screened for their potential to confer resistance to phenol, 2-phenylethanol, and styrene on an E. coli host. A pump sourced from P. putida was found to allow for increased host growth in the presence of styrene as compared to a cell with no efflux pump. The separation of styrene producing pathway was also investigated. Cells capable of performing the first and latter halves of the synthesis were allowed to grow separately and later combined in order to capitalize on the relatively lower toxicity of the intermediate, trans-cinnamate. The styrene production and yield from this separated set of cultures was compared to that resulting from the growth of cells containing the full set of styrene synthesis genes. Results from this experiment were inconclusive.
ContributorsLallmamode, Noor Atiya Jabeen (Author) / Nielsen, David (Thesis director) / Cadillo-Quiroz, Hinsby (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor) / School of Life Sciences (Contributor)
Created2015-05
136915-Thumbnail Image.png
Description
The purpose of this thesis was to investigate the properties of amorphous and crystalline NaTaO3 to determine what makes amorphous NaTaO3 a suitable photocatalyst for water splitting applications. Amorphous and nanocrystalline NaTaO3 were synthesized and characterized using X-Ray Diffraction (XRD), Raman Spectroscopy, and Fourier Transform Infrared Spectroscopy (FT-IR). The photocatalytic

The purpose of this thesis was to investigate the properties of amorphous and crystalline NaTaO3 to determine what makes amorphous NaTaO3 a suitable photocatalyst for water splitting applications. Amorphous and nanocrystalline NaTaO3 were synthesized and characterized using X-Ray Diffraction (XRD), Raman Spectroscopy, and Fourier Transform Infrared Spectroscopy (FT-IR). The photocatalytic activity of the materials was analyzed using methylene blue degradation as an indicator of photocatalytic activity. The amorphous material showed significant photocatalytic activity in methylene blue degradation experiments, removing 100% of a 0.1 mmol methylene blue solution in 20 minutes, compared to the monoclinic crystalline NaTaO3, which showed negligible photocatalytic activity. Additional electrochemical characterization studies were carried out with methyl viologen (MV2+) to determine the band structure of the materials. Performing these synthesis and characterization has provided insight into further investigation of amorphous NaTaO3 and what makes the material an effective and inexpensive photocatalyst.
ContributorsRorrer, Julie Elaine (Author) / Chan, Candace (Thesis director) / Bertoni, Mariana (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2014-05
137240-Thumbnail Image.png
Description
The goals of the styrene oxide adsorption experiments were to develop reliable isotherms of styrene oxide onto Dowex Optipore L-493 resin and onto mesoporous carbon adsorbents, in addition to determining the ideal conditions for styrene oxide production from E. coli. Adsorption is an effective means of separation used in industry

The goals of the styrene oxide adsorption experiments were to develop reliable isotherms of styrene oxide onto Dowex Optipore L-493 resin and onto mesoporous carbon adsorbents, in addition to determining the ideal conditions for styrene oxide production from E. coli. Adsorption is an effective means of separation used in industry to separate compounds, often organics from air and water. Styrene oxide adsorption runs without E. coli were conducted at concentrations ranging from 0.15 to 3.00 g/L with resin masses ranging from 0.1 to 0.5 g of Dowex Optipore L-493 and 0.5 to 0.75 g of mesoporous carbon adsorbent. Runs were conducted on a shake plate operating at 80 rpm for 24 hours at ambient temperature. Isotherms were developed from the results and then adsorption experiments with E. coli and L-493 were performed. Runs were conducted at glucose concentrations ranging from 20-40 g/L and resin masses of 0.100 g to 0.800 g. Samples were incubated for 72 hours and styrene oxide production was measured using an HPLC device. Specific loading values reached up to 0.356 g/g for runs without E. coli and nearly 0.003 g of styrene oxide was adsorbed by L-493 during runs with E. coli. Styrene oxide production was most effective at low resin masses and medium glucose concentrations when produced by E. coli.
ContributorsHsu, Joshua (Co-author) / Oremland, Zachary (Co-author) / Nielsen, David (Thesis director) / Staggs, Kyle (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor) / School of Sustainability (Contributor)
Created2014-05
130865-Thumbnail Image.png
Description

The goal of this research was to identify why the federal government should invest in solar research and development, and which areas of solar improvement should be focused on. Motivation for this can be found in the pressing need to prevent and reverse the effects of climate change, the inevitability

The goal of this research was to identify why the federal government should invest in solar research and development, and which areas of solar improvement should be focused on. Motivation for this can be found in the pressing need to prevent and reverse the effects of climate change, the inevitability of fossil fuel resources eventually running out, and the economic and job creation potential which solar energy holds. Additionally, it is important to note that the best course of action will involve a split of funding between current solar rollout and energy grid updating, and the R&D listed in this research. Upon examination, it can be seen that an energy revolution, led by a federal solar jobs program and a Green New Deal, would be both an ethically and economically beneficial solution. A transition from existing fossil fuel infrastructure to renewable, solar-powered infrastructure would not only be possible but highly beneficial in many aspects, including massive job creation, a more affordable, renewable energy solution to replace coal-fired plants, and no fuel spending or negotiation required.<br/>When examining which areas of solar improvement to focus on for R&D funding, four primary areas were identified, with solutions presented for each. These areas for improvement are EM capture, EM conversion efficiency, energy storage capacity, and the prevention of overheating. For each of these areas of improvement, affordable solutions that would greatly improve the efficiency and viability of solar as a primary energy source were identified. The most notable area that should be examined is solar storage, which would allow solar PV panels to overcome their greatest real and perceived obstacle, which is the inconsistent power generation. Solar storage is easily attainable, and with enough storage capacity, excess solar energy which would otherwise be wasted during the day can be stored and used during the night or cloudy weather as necessary. Furthermore, the implementation of highly innovative solutions, such as agrivoltaics, would allow for a solar revolution to occur.

ContributorsWhitlow, Hunter Marshall (Author) / Fong, Benjamin (Thesis director) / Andino, Jean (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
131510-Thumbnail Image.png
Description
Engineering is a multidisciplinary field with a variety of applications. However, since there are so many disciplines of engineering, it is often challenging to find the discipline that best suits an individual interested in engineering. Not knowing which area of engineering most aligns to one’s interests is challenging when deciding

Engineering is a multidisciplinary field with a variety of applications. However, since there are so many disciplines of engineering, it is often challenging to find the discipline that best suits an individual interested in engineering. Not knowing which area of engineering most aligns to one’s interests is challenging when deciding on a major and a career. With the development of the Engineering Interest Quiz (EIQ), the goal was to help individuals find the field of engineering that is most similar to their interests. Initially, an Engineering Faculty Survey (EFS) was created to gather information from engineering faculty at Arizona State University (ASU) and to determine keywords that describe each field of engineering. With this list of keywords, the EIQ was developed. Data from the EIQ compared the engineering students’ top three results for the best engineering discipline for them with their current engineering major of study. The data analysis showed that 70% of the respondents had their major listed as one of the top three results they were given and 30% of the respondents did not have their major listed. Of that 70%, 64% had their current major listed as the highest or tied for the highest percentage and 36% had their major listed as the second or third highest percentage. Furthermore, the EIQ data was compared between genders. Only 33% of the male students had their current major listed as their highest percentage, but 55% had their major as one of their top three results. Women had higher percentages with 63% listing their current major as their highest percentage and 81% listing it in the top three of their final results.
ContributorsWagner, Avery Rose (Co-author) / Lucca, Claudia (Co-author) / Taylor, David (Thesis director) / Miller, Cindy (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
132393-Thumbnail Image.png
Description
Engineering has historically been dominated by White men. However, in modern history, engineering is becoming more diverse as the opportunity to pursue engineering has become accessible to people of all races and genders. Yet, college ready high school students from nontraditional backgrounds—women, ethnic minorities, first-generation-to-college students, and those with financial

Engineering has historically been dominated by White men. However, in modern history, engineering is becoming more diverse as the opportunity to pursue engineering has become accessible to people of all races and genders. Yet, college ready high school students from nontraditional backgrounds—women, ethnic minorities, first-generation-to-college students, and those with financial need—often lack exposure to engineering, thus reducing their likelihood to pursue a career in this field. To create engineering learning experiences that can be expanded to a traditional high school science classroom, the Young Engineers Shape the World program at Arizona State University was consulted. The Young Engineers Shape the World program encourages women, notably the most underrepresented group in the engineering field, as well as other students of diverse backgrounds, to pursue engineering. The goal of this effort was to create a 3-contact hour chemical engineering based learning experience to help students in grades 10-11 learn about an application of chemical engineering. Using knowledge of chemical engineering, a soil pH testing activity was created, simulating a typical high school chemistry science experiment. In addition to measuring pH, students were asked to build a modern garden that contained a physical barrier that could protect the garden from acid rain while still allowing sunlight to reach the plant. Student feedback was collected in the form of an experience evaluation survey after each experience. Students found that the soil-moisture quality testing and design of a protective barrier was engaging. However, an iterative curriculum redesign-implement-evaluate effort is needed to arrive at a robust chemical engineering based design learning experience.
ContributorsOtis, Timothy Kevin (Author) / Ganesh, Tirupalavanam (Thesis director) / Schoepf, Jared (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
131779-Thumbnail Image.png
Description
This thesis aims to incorporate exosomes into an electrospun scaffold for tissue engineering applications. The motivation for this work is to develop an implant to regenerate tissue for patients with laryngeal defects. It was determined that it is feasible to incorporate exosomes into an electrospun scaffold. This addition of exosomes

This thesis aims to incorporate exosomes into an electrospun scaffold for tissue engineering applications. The motivation for this work is to develop an implant to regenerate tissue for patients with laryngeal defects. It was determined that it is feasible to incorporate exosomes into an electrospun scaffold. This addition of exosomes does alter the scaffold properties, by decreasing the average fiber diameter by roughly a factor of three and increasing the average modulus by roughly a factor of two. Cells were cultured on a scaffold with exosomes incorporated and were found to proliferate more than on a scaffold alone. This research lays the groundwork for further developing and optimizing an electrospun scaffold with exosomes incorporated to elicit a tissue regenerative response.
ContributorsKennedy, Maeve (Author) / Pizziconi, Vincent (Thesis director) / McPhail, Michael (Committee member) / School of International Letters and Cultures (Contributor) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131736-Thumbnail Image.png
Description
Current methods measuring the consumption of prescription and illicit drugs are often hampered by innate limitations, the data is slow and often restricted, which can impact the relevance and robustness of the associated data. Here, wastewater-based epidemiology (WBE) was applied as an alternative metric to measure trends in the consumption

Current methods measuring the consumption of prescription and illicit drugs are often hampered by innate limitations, the data is slow and often restricted, which can impact the relevance and robustness of the associated data. Here, wastewater-based epidemiology (WBE) was applied as an alternative metric to measure trends in the consumption of twelve narcotics within a collegiate setting from January 2018 to May 2018 at a Southwestern U.S. university. The present follow-up study was designed to identify potential changes in the consumption patterns of prescription and illicit drugs as the academic year progressed. Samples were collected from two sites that capture nearly 100% of campus-generated wastewater. Seven consecutive 24-hour composite raw wastewater samples were collected each month (n = 68) from both locations. The study identified the average consumption of select narcotics, in units of mg/day/1000 persons in the following order: cocaine (528 ± 266), heroin (404 ± 315), methylphenidate (343 ± 396), amphetamine (308 ±105), ecstasy (MDMA; 114 ± 198), oxycodone (57 ± 28), methadone (58 ± 73), and codeine (84 ± 40). The consumption of oxycodone, methadone, heroin, and cocaine were identified as statistically lower in the Spring 2018 semester compared to the Fall 2017. Universities may need to increase drug education for the fall semester to lower the consumption of drugs in that semester. Data from this research encompasses both human health and the built environment by evaluating public health through collection of municipal wastewater, allowing public health officials rapid and robust narcotic consumption data while maintaining the anonymity of the students, faculty, and staff.
ContributorsCarlson, Alyssa Rose (Author) / Halden, Rolf (Thesis director) / Gushgari, Adam (Committee member) / School of Human Evolution & Social Change (Contributor) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05