Matching Items (8)
Filtering by

Clear all filters

152548-Thumbnail Image.png
Description
Humans are capable of transferring learning for anticipatory control of dexterous object manipulation despite changes in degrees-of-freedom (DoF), i.e., switching from lifting an object with two fingers to lifting the same object with three fingers. However, the role that tactile information plays in this transfer of learning is unknown. In

Humans are capable of transferring learning for anticipatory control of dexterous object manipulation despite changes in degrees-of-freedom (DoF), i.e., switching from lifting an object with two fingers to lifting the same object with three fingers. However, the role that tactile information plays in this transfer of learning is unknown. In this study, subjects lifted an L-shaped object with two fingers (2-DoF), and then lifted the object with three fingers (3-DoF). The subjects were divided into two groups--one group performed the task wearing a glove (to reduce tactile sensibility) upon the switch to 3-DoF (glove group), while the other group did not wear the glove (control group). Compensatory moment (torque) was used as a measure to determine how well the subject could minimize the tilt of the object following the switch from 2-DoF to 3-DoF. Upon the switch to 3-DoF, subjects wearing the glove generated a compensatory moment (Mcom) that had a significantly higher error than the average of the last five trials at the end of the 3-DoF block (p = 0.012), while the control subjects did not demonstrate a significant difference in Mcom. Additional effects of the reduction in tactile sensibility were: (1) the grip force for the group of subjects wearing the glove was significantly higher in the 3-DoF trials compared to the 2-DoF trials (p = 0.014), while the grip force of the control subjects was not significantly different; (2) the difference in centers of pressure between the thumb and fingers (ΔCoP) significantly increased in the 3-DoF block for the group of subjects wearing the glove, while the ΔCoP of the control subjects was not significantly different; (3) lastly, the control subjects demonstrated a greater increase in lift force than the group of subjects wearing the glove (though results were not significant). Combined together, these results suggest different force modulation strategies are used depending on the amount of tactile feedback that is available to the subject. Therefore, reduction of tactile sensibility has important effects on subjects' ability to transfer learned manipulation across different DoF contexts.
ContributorsGaw, Nathan (Author) / Helms Tillery, Stephen (Thesis advisor) / Santello, Marco (Committee member) / Kleim, Jeffrey (Committee member) / Arizona State University (Publisher)
Created2014
150599-Thumbnail Image.png
Description
Situations of sensory overload are steadily becoming more frequent as the ubiquity of technology approaches reality--particularly with the advent of socio-communicative smartphone applications, and pervasive, high speed wireless networks. Although the ease of accessing information has improved our communication effectiveness and efficiency, our visual and auditory modalities--those modalities that today's

Situations of sensory overload are steadily becoming more frequent as the ubiquity of technology approaches reality--particularly with the advent of socio-communicative smartphone applications, and pervasive, high speed wireless networks. Although the ease of accessing information has improved our communication effectiveness and efficiency, our visual and auditory modalities--those modalities that today's computerized devices and displays largely engage--have become overloaded, creating possibilities for distractions, delays and high cognitive load; which in turn can lead to a loss of situational awareness, increasing chances for life threatening situations such as texting while driving. Surprisingly, alternative modalities for information delivery have seen little exploration. Touch, in particular, is a promising candidate given that it is our largest sensory organ with impressive spatial and temporal acuity. Although some approaches have been proposed for touch-based information delivery, they are not without limitations including high learning curves, limited applicability and/or limited expression. This is largely due to the lack of a versatile, comprehensive design theory--specifically, a theory that addresses the design of touch-based building blocks for expandable, efficient, rich and robust touch languages that are easy to learn and use. Moreover, beyond design, there is a lack of implementation and evaluation theories for such languages. To overcome these limitations, a unified, theoretical framework, inspired by natural, spoken language, is proposed called Somatic ABC's for Articulating (designing), Building (developing) and Confirming (evaluating) touch-based languages. To evaluate the usefulness of Somatic ABC's, its design, implementation and evaluation theories were applied to create communication languages for two very unique application areas: audio described movies and motor learning. These applications were chosen as they presented opportunities for complementing communication by offloading information, typically conveyed visually and/or aurally, to the skin. For both studies, it was found that Somatic ABC's aided the design, development and evaluation of rich somatic languages with distinct and natural communication units.
ContributorsMcDaniel, Troy Lee (Author) / Panchanathan, Sethuraman (Thesis advisor) / Davulcu, Hasan (Committee member) / Li, Baoxin (Committee member) / Santello, Marco (Committee member) / Arizona State University (Publisher)
Created2012
133334-Thumbnail Image.png
Description
Engineering an object means engineering the process that creates the object. Today, software can make the task of tracking these processes robust and straightforward. When engineering requirements are strict and strenuous, software custom-built for such processes can prove essential. The work for this project was developing ICDB, an inventory control

Engineering an object means engineering the process that creates the object. Today, software can make the task of tracking these processes robust and straightforward. When engineering requirements are strict and strenuous, software custom-built for such processes can prove essential. The work for this project was developing ICDB, an inventory control and build management system created for spacecraft engineers at ASU to record each step of their engineering processes. In-house development means ICDB is more precisely designed around its users' functionality and cost requirements than most off-the-shelf commercial offerings. By placing a complex relational database behind an intuitive web application, ICDB enables organizations and their users to create and store parts libraries, assembly designs, purchasing and location records for inventory items, and more.
ContributorsNoss, Karl Friederich (Author) / Davulcu, Hasan (Thesis director) / Rios, Ken (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
155682-Thumbnail Image.png
Description
Millions of individuals suffer from gait impairments due to stroke or other neurological disorders. A primary goal of patients is to walk independently, but most patients only achieve a poor functional outcome five years after injury. Despite the growing interest in using robotic devices for rehabilitation of sensorimotor

Millions of individuals suffer from gait impairments due to stroke or other neurological disorders. A primary goal of patients is to walk independently, but most patients only achieve a poor functional outcome five years after injury. Despite the growing interest in using robotic devices for rehabilitation of sensorimotor function, state-of-the-art robotic interventions in gait therapy have not resulted in improved outcomes when compared to traditional treadmill-based therapy. Because bipedal walking requires neural coupling and dynamic interactions between the legs, a fundamental understanding of the sensorimotor mechanisms of inter-leg coordination during walking is needed to inform robotic interventions in gait therapy. This dissertation presents a systematic exploration of sensorimotor mechanisms of inter-leg coordination by studying the effect of unilateral perturbations of the walking surface stiffness on contralateral muscle activation in healthy populations. An analysis of the contribution of several sensory modalities to the muscle activation of the opposite leg provides new insight into the sensorimotor control mechanisms utilized in human walking, including the role of supra-spinal neural circuits in inter-leg coordination. Based on these insights, a model is created which relates the unilateral deflection of the walking surface to the resulting neuromuscular activation in the opposite leg. Additionally, case studies with hemiplegic walkers indicate the existence of the observed mechanism in neurologically impaired walkers. The results of this dissertation suggest a novel approach to gait therapy for hemiplegic patients in which desired muscle activity is evoked in the impaired leg by only interacting with the healthy leg. One of the most significant advantages of this approach over current rehabilitation protocols is the safety of the patient since there is no direct manipulation of the impaired leg. Therefore, the methods and results presented in this dissertation represent a potential paradigm shift in robot-assisted gait therapy.
ContributorsSkidmore, Jeffrey Alan (Author) / Artemiadis, Panagiotis (Thesis advisor) / Santello, Marco (Committee member) / Berman, Spring (Committee member) / Lee, Hyunglae (Committee member) / Marvi, Hamidreza (Committee member) / Arizona State University (Publisher)
Created2017
156204-Thumbnail Image.png
Description
The human hand comprises complex sensorimotor functions that can be impaired by neurological diseases and traumatic injuries. Effective rehabilitation can bring the impaired hand back to a functional state because of the plasticity of the central nervous system to relearn and remodel the lost synapses in the brain. Current rehabilitation

The human hand comprises complex sensorimotor functions that can be impaired by neurological diseases and traumatic injuries. Effective rehabilitation can bring the impaired hand back to a functional state because of the plasticity of the central nervous system to relearn and remodel the lost synapses in the brain. Current rehabilitation therapies focus on strengthening motor skills, such as grasping, employ multiple objects of varying stiffness and devices that are bulky, costly, and have limited range of stiffness due to the rigid mechanisms employed in their variable stiffness actuators. This research project presents a portable cost-effective soft robotic haptic device with a broad stiffness range that is adjustable and can be utilized in both clinical and home settings. The device eliminates the need for multiple objects by employing a pneumatic soft structure made with highly compliant materials that act as the actuator as well as the structure of the haptic interface. It is made with interchangeable soft elastomeric sleeves that can be customized to include materials of varying stiffness to increase or decrease the stiffness range. The device is fabricated using existing 3D printing technologies, and polymer molding and casting techniques, thus keeping the cost low and throughput high. The haptic interface is linked to either an open-loop system that allows for an increased pressure during usage or closed-loop system that provides pressure regulation in accordance with the stiffness the user specifies. A preliminary evaluation is performed to characterize the effective controllable region of variance in stiffness. Results indicate that the region of controllable stiffness was in the center of the device, where the stiffness appeared to plateau with each increase in pressure. The two control systems are tested to derive relationships between internal pressure, grasping force exertion on the surface, and displacement using multiple probing points on the haptic device. Additional quantitative evaluation is performed with study participants and juxtaposed to a qualitative analysis to ensure adequate perception in compliance variance. Finally, a qualitative evaluation showed that greater than 60% of the trials resulted in the correct perception of stiffness in the haptic device.
ContributorsSebastian, Frederick (Author) / Polygerinos, Panagiotis (Thesis advisor) / Santello, Marco (Committee member) / Fu, Qiushi (Committee member) / Arizona State University (Publisher)
Created2018
158792-Thumbnail Image.png
Description
Access to real-time situational information including the relative position and motion of surrounding objects is critical for safe and independent travel. Object or obstacle (OO) detection at a distance is primarily a task of the visual system due to the high resolution information the eyes are able to receive from

Access to real-time situational information including the relative position and motion of surrounding objects is critical for safe and independent travel. Object or obstacle (OO) detection at a distance is primarily a task of the visual system due to the high resolution information the eyes are able to receive from afar. As a sensory organ in particular, the eyes have an unparalleled ability to adjust to varying degrees of light, color, and distance. Therefore, in the case of a non-visual traveler, someone who is blind or low vision, access to visual information is unattainable if it is positioned beyond the reach of the preferred mobility device or outside the path of travel. Although, the area of assistive technology in terms of electronic travel aids (ETA’s) has received considerable attention over the last two decades; surprisingly, the field has seen little work in the area focused on augmenting rather than replacing current non-visual travel techniques, methods, and tools. Consequently, this work describes the design of an intuitive tactile language and series of wearable tactile interfaces (the Haptic Chair, HaptWrap, and HapBack) to deliver real-time spatiotemporal data. The overall intuitiveness of the haptic mappings conveyed through the tactile interfaces are evaluated using a combination of absolute identification accuracy of a series of patterns and subjective feedback through post-experiment surveys. Two types of spatiotemporal representations are considered: static patterns representing object location at a single time instance, and dynamic patterns, added in the HaptWrap, which represent object movement over a time interval. Results support the viability of multi-dimensional haptics applied to the body to yield an intuitive understanding of dynamic interactions occurring around the navigator during travel. Lastly, it is important to point out that the guiding principle of this work centered on providing the navigator with spatial knowledge otherwise unattainable through current mobility techniques, methods, and tools, thus, providing the \emph{navigator} with the information necessary to make informed navigation decisions independently, at a distance.
ContributorsDuarte, Bryan Joiner (Author) / McDaniel, Troy (Thesis advisor) / Davulcu, Hasan (Committee member) / Li, Baoxin (Committee member) / Venkateswara, Hemanth (Committee member) / Arizona State University (Publisher)
Created2020
153926-Thumbnail Image.png
Description
One of the most remarkable outcomes resulting from the evolution of the web into Web 2.0, has been the propelling of blogging into a widely adopted and globally accepted phenomenon. While the unprecedented growth of the Blogosphere has added diversity and enriched the media, it has also added complexity. To

One of the most remarkable outcomes resulting from the evolution of the web into Web 2.0, has been the propelling of blogging into a widely adopted and globally accepted phenomenon. While the unprecedented growth of the Blogosphere has added diversity and enriched the media, it has also added complexity. To cope with the relentless expansion, many enthusiastic bloggers have embarked on voluntarily writing, tagging, labeling, and cataloguing their posts in hopes of reaching the widest possible audience. Unbeknown to them, this reaching-for-others process triggers the generation of a new kind of collective wisdom, a result of shared collaboration, and the exchange of ideas, purpose, and objectives, through the formation of associations, links, and relations. Mastering an understanding of the Blogosphere can greatly help facilitate the needs of the ever growing number of these users, as well as producers, service providers, and advertisers into facilitation of the categorization and navigation of this vast environment. This work explores a novel method to leverage the collective wisdom from the infused label space for blog search and discovery. The work demonstrates that the wisdom space can provide a most unique and desirable framework to which to discover the highly sought after background information that could aid in the building of classifiers. This work incorporates this insight into the construction of a better clustering of blogs which boosts the performance of classifiers for identifying more relevant labels for blogs, and offers a mechanism that can be incorporated into replacing spurious labels and mislabels in a multi-labeled space.
ContributorsGalan, Magdiel F (Author) / Liu, Huan (Thesis advisor) / Davulcu, Hasan (Committee member) / Ye, Jieping (Committee member) / Li, Baoxin (Committee member) / Arizona State University (Publisher)
Created2015
153929-Thumbnail Image.png
Description
Stroke accounts for high rates of mortality and disability in the United States. It levies great economic burden on the affected subjects, their family and the society at large. Motor impairments after stroke mainly manifest themselves as hemiplegia or hemiparesis in the upper and lower limbs. Motor recovery is highly

Stroke accounts for high rates of mortality and disability in the United States. It levies great economic burden on the affected subjects, their family and the society at large. Motor impairments after stroke mainly manifest themselves as hemiplegia or hemiparesis in the upper and lower limbs. Motor recovery is highly variable but can be enhanced through motor rehabilitation with sufficient movement repetition and intensity. Cost effective assistive devices that can augment therapy by increasing movement repetition both at home and in the clinic may facilitate recovery. This thesis aims to develop a Smart Glove that can enhance motor recovery by providing feedback to both the therapist and the patient on the number of hand movements (wrist and finger extensions) performed during therapy. The design implements resistive flex sensors for detecting the extensions and processes the information using the Lightblue bean microcontroller mounted on the wrist. Communication between the processing unit and display module is wireless and executes Bluetooth 4.0 communication protocol. The capacity for the glove to measure and record hand movements was tested on three stroke and one traumatic brain injured patient while performing a box and blocks test. During testing many design flaws were noted and several were adapted during testing to improve the function of the glove. Results of the testing showed that the glove could detect wrist and finger extensions but that the sensitivity had to be calibrated for each patient. It also allowed both the therapist and patient to know whether the patient was actually performing the task in the manner requested by the therapist. Further work will reveal whether this feedback can enhance recovery of hand function in neurologically impaired patients.
ContributorsSasidharan, Smrithi (Author) / Kleim, Jeffrey A. (Thesis advisor) / Santello, Marco (Committee member) / Buneo, Christopher A. (Committee member) / Arizona State University (Publisher)
Created2015