Matching Items (31)
Filtering by

Clear all filters

150393-Thumbnail Image.png
Description
ABSTRACT The behavior of the fission products, as they are released from fission events during nuclear reaction, plays an important role in nuclear fuel performance. Fission product release can occur through grain boundary (GB) at low burnups; therefore, this study simulates the mass transport of fission gases in a 2-D

ABSTRACT The behavior of the fission products, as they are released from fission events during nuclear reaction, plays an important role in nuclear fuel performance. Fission product release can occur through grain boundary (GB) at low burnups; therefore, this study simulates the mass transport of fission gases in a 2-D GB network to look into the effects of GB characteristics on this phenomenon, with emphasis on conditions that can lead to percolation. A finite element model was created based on the microstructure of a depleted UO2 sample characterized by Electron Backscattering Diffraction (EBSD). The GBs were categorized into high (D2), low (D1) and bulk diffusivity (Dbulk) based on their misorientation angles and Coincident Site Lattice (CSL) types. The simulation was run using different diffusivity ratios (D2/Dbulk) ranging from 1 to 10^8. The model was set up in three ways: constant temperature case, temperature gradient effects and window methods that mimic the environments in a Light Water Reactor (LWR). In general, the formation of percolation paths was observed at a ratio higher than 10^4 in the measured GB network, which had a 68% fraction of high diffusivity GBs. The presence of temperature gradient created an uneven concentration distribution and decreased the overall mass flux. Finally, radial temperature and fission gas concentration profiles were obtained for a fuel pellet in operation using an approximate 1-D model. The 100 µm long microstructurally explicit model was used to simulate, to the scale of a real UO2 pellet, the mass transport at different radial positions, with boundary conditions obtained from the profiles. Stronger percolation effects were observed at the intermediate and periphery position of the pellet. The results also showed that highest mass flux happens at the edge of a pellet at steady state to accommodate for the sharp concentration drop.
ContributorsLim, Harn Chyi (Author) / Peralta, Pedro (Thesis advisor) / Dey, Sandwip (Committee member) / Sieradzki, Karl (Committee member) / Arizona State University (Publisher)
Created2011
151351-Thumbnail Image.png
Description
Dealloying induced stress corrosion cracking is particularly relevant in energy conversion systems (both nuclear and fossil fuel) as many failures in alloys such as austenitic stainless steel and nickel-based systems result directly from dealloying. This study provides evidence of the role of unstable dynamic fracture processes in dealloying induced stress-corrosion

Dealloying induced stress corrosion cracking is particularly relevant in energy conversion systems (both nuclear and fossil fuel) as many failures in alloys such as austenitic stainless steel and nickel-based systems result directly from dealloying. This study provides evidence of the role of unstable dynamic fracture processes in dealloying induced stress-corrosion cracking of face-centered cubic alloys. Corrosion of such alloys often results in the formation of a brittle nanoporous layer which we hypothesize serves to nucleate a crack that owing to dynamic effects penetrates into the un-dealloyed parent phase alloy. Thus, since there is essentially a purely mechanical component of cracking, stress corrosion crack propagation rates can be significantly larger than that predicted from electrochemical parameters. The main objective of this work is to examine and test this hypothesis under conditions relevant to stress corrosion cracking. Silver-gold alloys serve as a model system for this study since hydrogen effects can be neglected on a thermodynamic basis, which allows us to focus on a single cracking mechanism. In order to study various aspects of this problem, the dynamic fracture properties of monolithic nanoporous gold (NPG) were examined in air and under electrochemical conditions relevant to stress corrosion cracking. The detailed processes associated with the crack injection phenomenon were also examined by forming dealloyed nanoporous layers of prescribed properties on un-dealloyed parent phase structures and measuring crack penetration distances. Dynamic fracture in monolithic NPG and in crack injection experiments was examined using high-speed (106 frames s-1) digital photography. The tunable set of experimental parameters included the NPG length scale (20-40 nm), thickness of the dealloyed layer (10-3000 nm) and the electrochemical potential (0.5-1.5 V). The results of crack injection experiments were characterized using the dual-beam focused ion beam/scanning electron microscopy. Together these tools allow us to very accurately examine the detailed structure and composition of dealloyed grain boundaries and compare crack injection distances to the depth of dealloying. The results of this work should provide a basis for new mathematical modeling of dealloying induced stress corrosion cracking while providing a sound physical basis for the design of new alloys that may not be susceptible to this form of cracking. Additionally, the obtained results should be of broad interest to researchers interested in the fracture properties of nano-structured materials. The findings will open up new avenues of research apart from any implications the study may have for stress corrosion cracking.
ContributorsSun, Shaofeng (Author) / Sieradzki, Karl (Thesis advisor) / Jiang, Hanqing (Committee member) / Peralta, Pedro (Committee member) / Arizona State University (Publisher)
Created2012
151443-Thumbnail Image.png
Description
The focus of this investigation includes three aspects. First, the development of nonlinear reduced order modeling techniques for the prediction of the response of complex structures exhibiting "large" deformations, i.e. a geometrically nonlinear behavior, and modeled within a commercial finite element code. The present investigation builds on a general methodology,

The focus of this investigation includes three aspects. First, the development of nonlinear reduced order modeling techniques for the prediction of the response of complex structures exhibiting "large" deformations, i.e. a geometrically nonlinear behavior, and modeled within a commercial finite element code. The present investigation builds on a general methodology, successfully validated in recent years on simpler panel structures, by developing a novel identification strategy of the reduced order model parameters, that enables the consideration of the large number of modes needed for complex structures, and by extending an automatic strategy for the selection of the basis functions used to represent accurately the displacement field. These novel developments are successfully validated on the nonlinear static and dynamic responses of a 9-bay panel structure modeled within Nastran. In addition, a multi-scale approach based on Component Mode Synthesis methods is explored. Second, an assessment of the predictive capabilities of nonlinear reduced order models for the prediction of the large displacement and stress fields of panels that have a geometric discontinuity; a flat panel with a notch was used for this assessment. It is demonstrated that the reduced order models of both virgin and notched panels provide a close match of the displacement field obtained from full finite element analyses of the notched panel for moderately large static and dynamic responses. In regards to stresses, it is found that the notched panel reduced order model leads to a close prediction of the stress distribution obtained on the notched panel as computed by the finite element model. Two enrichment techniques, based on superposition of the notch effects on the virgin panel stress field, are proposed to permit a close prediction of the stress distribution of the notched panel from the reduced order model of the virgin one. A very good prediction of the full finite element results is achieved with both enrichments for static and dynamic responses. Finally, computational challenges associated with the solution of the reduced order model equations are discussed. Two alternatives to reduce the computational time for the solution of these problems are explored.
ContributorsPerez, Ricardo Angel (Author) / Mignolet, Marc (Thesis advisor) / Oswald, Jay (Committee member) / Spottswood, Stephen (Committee member) / Peralta, Pedro (Committee member) / Jiang, Hanqing (Committee member) / Arizona State University (Publisher)
Created2012
150744-Thumbnail Image.png
Description
Females and underrepresented ethnic minorities earn a small percentage of engineering and computer science bachelor's degrees awarded in the United States, earn an even smaller proportion of master's and doctoral degrees, and are underrepresented in the engineering workforce (Engineering Workforce Commission, [2006], as cited in National Science Foundation, 2012; United

Females and underrepresented ethnic minorities earn a small percentage of engineering and computer science bachelor's degrees awarded in the United States, earn an even smaller proportion of master's and doctoral degrees, and are underrepresented in the engineering workforce (Engineering Workforce Commission, [2006], as cited in National Science Foundation, 2012; United States Department of Education, [2006], as cited in National Science Foundation, 2009a; United States Department of Education, [2006], as cited in National Science Foundation, 2009b). Considerable research has examined the perceptions, culture, curriculum, and pedagogy in engineering that inhibits the achievement of women and underrepresented ethnic minorities. This action research study used a qualitative approach to examine the characteristics and experiences of Latina students who pursued a bachelor's degree in the Ira A. Fulton Schools of Engineering at Arizona State University (ASU) as part of the 2008 first-time full-time freshman cohort. The researcher conducted two semi-structured individual interviews with seven undergraduate Latina students who successfully persisted to their fourth (senior) year in engineering. The researcher aimed to understand what characteristics made these students successful and how their experiences affected their persistence in an engineering major. The data collected showed that the Latina participants were motivated to persist in their engineering degree program due to their parents' expectations for success and high academic achievement; their desire to overcome the discrimination, stereotyping, and naysayers that they encountered; and their aspiration to become a role model for their family and other students interested in pursuing engineering. From the data collected, the researcher provided suggestions to implement and adapt educational activities and support systems within the Ira A. Fulton Schools of Engineering to improve the retention and graduation rates of Latinas in engineering at ASU.
ContributorsRobinson, Carrie (Author) / Mcintyre, Lisa (Thesis advisor) / Hesse, Marian (Committee member) / Ganesh, Tirupalavanam G. (Committee member) / Arizona State University (Publisher)
Created2012
136339-Thumbnail Image.png
Description
The following is a report that will evaluate the microstructure of the nickel-based superalloy Hastelloy X and its relationship to mechanical properties in different load conditions. Hastelloy X is of interest to the company AORA because its strength and oxidation resistance at high temperatures is directly applicable to their needs

The following is a report that will evaluate the microstructure of the nickel-based superalloy Hastelloy X and its relationship to mechanical properties in different load conditions. Hastelloy X is of interest to the company AORA because its strength and oxidation resistance at high temperatures is directly applicable to their needs in a hybrid concentrated solar module. The literature review shows that the microstructure will produce different carbides at various temperatures, which can be beneficial to the strength of the alloy. These precipitates are found along the grain boundaries and act as pins that limit dislocation flow, as well as grain boundary sliding, and improve the rupture strength of the material. Over time, harmful precipitates form which counteract the strengthening effect of the carbides and reduce rupture strength, leading to failure. A combination of indentation and microstructure mapping was used in an effort to link local mechanical behavior to microstructure variability. Electron backscatter diffraction (EBSD) and energy dispersive spectroscopy (EDS) were initially used as a means to characterize the microstructure prior to testing. Then, a series of room temperature Vickers hardness tests at 50 and 500 gram-force were used to evaluate the variation in the local response as a function of indentation size. The room temperature study concluded that both the hardness and standard deviation increased at lower loads, which is consistent with the grain size distribution seen in the microstructure scan. The material was then subjected to high temperature spherical indentation. Load-displacement curves were essential in evaluating the decrease in strength of the material with increasing temperature. Through linear regression of the unloading portion of the curve, the plastic deformation was determined and compared at different temperatures as a qualitative method to evaluate local strength.
ContributorsCelaya, Andrew Jose (Author) / Peralta, Pedro (Thesis director) / Solanki, Kiran (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2015-05
136679-Thumbnail Image.png
Description
Measuring the dynamic strength of a material based on stress and strain data is challenging due to the diculty in recording strain and stress under the short times and large loads typical of dynamic events, such as impact and shock loading. The research involved in this study aims to perform

Measuring the dynamic strength of a material based on stress and strain data is challenging due to the diculty in recording strain and stress under the short times and large loads typical of dynamic events, such as impact and shock loading. The research involved in this study aims to perform nite element simulations for a new experimental method that can provide information on material dynamic strength, which is crucial for many engineering applications. In this method, a shock wave is applied to a metallic sample with a perturbed surface, i.e, one with periodic ripples machined or etched on the surface. The speed and magnitude of the change of am- plitude of the ripples are recorded. It is known that these parameters are functions of both geometry and material strength. The experimental data are compared with the simulation results produced. The dynamic yield strength of a material is taken to be the same as the strength used in simulations when a close match is found. The simulations have produced results that closely matched the experimental data and predicted the dynamic yield strength of metallic samples and have led to the discov- ery of a new experimental technique to lower the impact velocity required to induce amplitude changes in surface perturbations under shock loading. Thus, shock experi- ments to measure strength using surface perturbations will become easier to conduct and span a wider range of conditions. However, the existing simulation models are not adequate to examine the relations among hardening behavior and the change of amplitude and velocity on the sample surface. Thus, the models should be further modied to study dierent material hardening behaviors under dynamic loadings.
ContributorsChen, Yan (Author) / Peralta, Pedro (Thesis director) / Oswald, Jay (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2014-12
136680-Thumbnail Image.png
Description
Understanding damage evolution, particularly as it relates to local nucleation and growth kinetics of spall failure in metallic materials subjected to shock loading, is critical to national security. This work uses computational modeling to elucidate what characteristics have the highest impact on damage localization at the microstructural level in metallic

Understanding damage evolution, particularly as it relates to local nucleation and growth kinetics of spall failure in metallic materials subjected to shock loading, is critical to national security. This work uses computational modeling to elucidate what characteristics have the highest impact on damage localization at the microstructural level in metallic materials, since knowledge of these characteristics is critical to improve these materials. The numerical framework consists of a user-defined material model implemented in a user subroutine run in ABAQUS/Explicit that takes into account crystal plasticity, grain boundary effects, void nucleation and initial growth, and both isotropic and kinematic hardening to model incipient spall. Finite element simulations were performed on copper bicrystal models to isolate the boundary effects between two grains. Two types of simulations were performed in this work: experimentally verified cases in order to validate the constitutive model as well as idealized cases in an attempt to determine the microstructural characteristic that define weakest links in terms of spall damage. Grain boundary effects on damage localization were studied by varying grain boundary orientation in respect to the shock direction and the crystallographic properties of each grain in the bicrystal. Varying these parameters resulted in a mismatch in Taylor factor across the grain boundary and along the shock direction. The experimentally verified cases are models of specific damage sites found from flyer plate impact tests on copper multicrystals in which the Taylor factor mismatch across the grain boundary and along the shock direction are both high or both low. For the idealized cases, grain boundary orientation and crystallography of the grains are chosen such that the Taylor factor mismatch in the grain boundary normal and along the shock direction are maximized or minimized. A perpendicular grain boundary orientation in respect to the shock direction maximizes Taylor factor mismatch, while a parallel grain boundary minimizes the mismatch. Furthermore, it is known that <1 1 1> crystals have the highest Taylor factor, while <0 0 1> has nearly the lowest Taylor factor. The permutation of these extremes for mismatch in the grain boundary normal and along the shock direction results in four idealized cases that were studied for this work. Results of the simulations demonstrate that the material model is capable of predicting damage localization, as it has been able to reproduce damage sites found experimentally. However, these results are qualitative since further calibration is still required to produce quantitatively accurate results. Moreover, comparisons of results for void nucleation rate and void growth rate suggests that void nucleation is more influential in the total void volume fraction for bicrystals with high property mismatch across the interface, suggesting that nucleation is the dominant characteristic in the propagation of damage in the material. Further work in recalibrating the simulation parameters and modeling different bicrystal orientations must be done to verify these results.
ContributorsVo, Johnathan Hiep (Author) / Peralta, Pedro (Thesis director) / Oswald, Jay (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2014-12
133882-Thumbnail Image.png
Description
Based on James Marcia's theory, identity development in youth is the degree to which one has explored and committed to a vocation [1], [2]. During the path to an engineering identity, students will experience a crisis, when one's values and choices are examined and reevaluated, and a commitment, when the

Based on James Marcia's theory, identity development in youth is the degree to which one has explored and committed to a vocation [1], [2]. During the path to an engineering identity, students will experience a crisis, when one's values and choices are examined and reevaluated, and a commitment, when the outcome of the crisis leads the student to commit to becoming an engineer. During the crisis phase, students are offered a multitude of experiences to shape their values and choices to influence commitment to becoming an engineering student. Student's identities in engineering are fostered through mentoring from industry, alumni, and peer coaching [3], [4]; experiences that emphasize awareness of the importance of professional interactions [5]; and experiences that show creativity, collaboration, and communication as crucial components to engineering. Further strategies to increase students' persistence include support in their transition to becoming an engineering student, education about professional engineers and the workplace [6], and engagement in engineering activities beyond the classroom. Though these strategies are applied to all students, there are challenges students face in confronting their current identity and beliefs before they can understand their value to society and achieve personal satisfaction. To understand student's progression in developing their engineering identity, first year engineering students were surveyed at the beginning and end of their first semester. Students were asked to rate their level of agreement with 22 statements about their engineering experience. Data included 840 cases. Items with factor loading less than 0.6 suggesting no sufficient explanation were removed in successive factor analysis to identify the four factors. Factor analysis indicated that 60.69% of the total variance was explained by the successive factors. Survey questions were categorized into three factors: engineering identity as defined by sense of belonging and self-efficacy, doubts about becoming an engineer, and exploring engineering. Statements in exploring engineering indicated student awareness, interest and enjoyment within engineering. Students were asked to think about whether they spent time learning what engineers do and participating in engineering activities. Statements about doubts about engineering to engineering indicated whether students had formed opinions about their engineering experience and had understanding about their environment. Engineering identity required thought in belonging and self-efficacy. Belonging statements called for thought about one's opinion in the importance of being an engineer, the meaning of engineering, an attachment to engineering, and self-identification as an engineer. Statements about self-efficacy required students to contemplate their personal judgement of whether they would be able to succeed and their ability to become an engineer. Effort in engineering indicated student willingness to invest time and effort and their choices and effort in their engineering discipline.
ContributorsNguyen, Amanda (Author) / Ganesh, Tirupalavanam (Thesis director) / Robinson, Carrie (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
171937-Thumbnail Image.png
Description
Microstructure refinement and alloy additions are considered potential routes to increase high temperature performance of existing metallic superalloys used under extreme conditions. Nanocrystalline (NC) Cu-10at%Ta exhibits such improvements over microstructurally unstable NC metals, leading to enhanced creep behavior compared to its coarse-grained (CG) counterparts. However, the low melting point of

Microstructure refinement and alloy additions are considered potential routes to increase high temperature performance of existing metallic superalloys used under extreme conditions. Nanocrystalline (NC) Cu-10at%Ta exhibits such improvements over microstructurally unstable NC metals, leading to enhanced creep behavior compared to its coarse-grained (CG) counterparts. However, the low melting point of Cu compared to other FCC metals, e.g., Ni, might lead to an early onset of diffusional creep mechanisms. Thus, this research seeks to study the thermo-mechanical behavior and stability of hierarchical (prepared using arc-melting) and NC (prepared by collaborators through powder pressing and annealing) Ni-Y-Zr alloys where Zr is expected to provide solid solution and grain boundary strengthening in hierarchical and NC alloys, respectively, while Ni-Y and Ni-Zr intermetallic precipitates (IMCs) would provide kinetic stability. Hierarchical alloys had microstructures stable up to 1100 °C with ultrafine eutectic of ~300 nm, dendritic arm spacing of ~10 μm, and grain size ~1-2 mm. Room temperature hardness tests along with uniaxial compression performed at 25 and 600 °C revealed that microhardness and yield strength of hierarchical alloys with small amounts of Y (0.5-1wt%) and Zr (1.5-3 wt%) were comparable to Ni-superalloys, due to the hierarchical microstructure and potential presence of nanoscale IMCs. In contrast, NC alloys of the same composition were found to be twice as hard as the hierarchical alloys. Creep tests at 0.5 homologous temperature showed active Coble creep mechanisms in hierarchical alloys at low stresses with creep rates slower than Fe-based superalloys and dislocation creep mechanisms at higher stresses. Creep in NC alloys at lower stresses was only 20 times faster than hierarchical alloys, with the difference in grain size ranging from 10^3 to 10^6 times at the same temperature. These NC alloys showed enhanced creep properties over other NC metals and are expected to have rates equal to or improved over the CG hierarchical alloys with ECAP processing techniques. Lastly, the in-situ wide-angle x-ray scattering (WAXS) measurements during quasi-static and creep tests implied stresses being carried mostly by the matrix before yielding and in the primary creep stage, respectively, while relaxation was observed in Ni5Zr for both hierarchical and NC alloys. Beyond yielding and in the secondary creep stage, lattice strains reached a steady state, thereby, an equilibrium between plastic strain rates was achieved across different phases, so that deformation reaches a saturation state where strain hardening effects are compensated by recovery mechanisms.
ContributorsSharma, Shruti (Author) / Peralta, Pedro (Thesis advisor) / Alford, Terry (Committee member) / Jiao, Yang (Committee member) / Solanki, Kiran (Committee member) / Arizona State University (Publisher)
Created2022
171947-Thumbnail Image.png
Description
Aromatic polymers, with benzene-like rings in their main chains, include materials such as polyurea, an amorphous elastomer capable of dissipating large amounts of energy under dynamic loading, which makes it a promising coating for defensive systems. Although computational research exists that investigates the atomic-level response of polyurea and other amorphous

Aromatic polymers, with benzene-like rings in their main chains, include materials such as polyurea, an amorphous elastomer capable of dissipating large amounts of energy under dynamic loading, which makes it a promising coating for defensive systems. Although computational research exists that investigates the atomic-level response of polyurea and other amorphous aromatic polymers to extreme conditions, there is little experimental work to validate these models 1) at the atomic-scale and 2) under high pressures characteristic of extreme dynamic loading. Understanding structure-property relationships at the atomic-level is important for polymers, considering many of them undergo pressure and temperature-induced structural transformations, which must be understood to formulate accurate predictive models. This work aims to gain a deeper understanding of the high-pressure structural response of aromatic polymers at the atomic-level, with emphasis into the mechanisms associated with high-pressure transformations. Hence, atomic-level structural data at high pressures was obtained in situ via multiangle energy dispersive X-ray diffraction (EDXD) experiments at the Advanced Photon Source (APS) for polyurea and another amorphous aromatic polymer, polysulfone, chosen as a reference due to its relatively simple structure. Pressures up to 6 GPa were applied using a Paris Edinburgh (PE) hydraulic press at room temperature. Select polyurea samples were also heated to 277 °C at 6 GPa. The resulting structure factors and pair distribution functions, along with molecular dynamics simulations of polyurea provided by collaborators, suggest that the structures of both polymers are stable up to 6 GPa, aside from reductions in free-volume between polymer backbones. As higher pressures (≲ 32 GPa) were applied using diamond anvils in combination with the PE press, indications of structural transformations were observed in both polymers that appear similar in nature to the sp2-sp3 hybridization in compressed carbon. The transformation occurs gradually up to at least ~ 26 GPa in PSF, while it does not progress past ~ 15 GPa in polyurea. The changes are largely reversible, especially in polysulfone, consistent with pressure-driven, reversible graphite-diamond transformations in the absence of applied temperature. These results constitute some of the first in situ observations of the mechanisms that drive pressure-induced structural transformations in aromatic polymers.
ContributorsEastmond, Tyler (Author) / Peralta, Pedro (Thesis advisor) / Hoover, Christian (Committee member) / Hrubiak, Rostislav (Committee member) / Mignolet, Marc (Committee member) / Oswald, Jay (Committee member) / Arizona State University (Publisher)
Created2022