Matching Items (10)
Filtering by

Clear all filters

148195-Thumbnail Image.png
Description

The colossal global counterfeit market and advances in cryptography including quantum computing supremacy have led the drive for a class of anti-counterfeit tags that are physically unclonable. Dendrites, previously considered an undesirable side effect of battery operation, have promise as an extremely versatile version of such tags, with their fundamental

The colossal global counterfeit market and advances in cryptography including quantum computing supremacy have led the drive for a class of anti-counterfeit tags that are physically unclonable. Dendrites, previously considered an undesirable side effect of battery operation, have promise as an extremely versatile version of such tags, with their fundamental nature ensuring that no two dendrites are alike and that they can be read at multiple magnification scales. In this work, we first pursue a simulation for electrochemical dendrites that elucidates fundamental information about their growth mechanism. We then translate these results into physical dendrites and demonstrate methods of producing a hash from these dendrites that is damage-tolerant for real-world verification. Finally, we explore theoretical curiosities that arise from the fractal nature of dendrites. We find that uniquely ramified dendrites, which rely on lower ion mobility and conductive deposition, are particularly amenable to wavelet hashing, and demonstrate that these dendrites have strong commercial potential for securing supply chains at the highest level while maintaining a low price point.

ContributorsSneh, Tal (Author) / Kozicki, Michael (Thesis director) / Gonzalez-Velo, Yago (Committee member) / School of Molecular Sciences (Contributor) / Department of Physics (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148014-Thumbnail Image.png
Description

My research aims to determine the effectiveness of meditation and sleep applications (apps) on the reduction of anxiety and stress in college students, with a focus on sedative piano music. Results showed a significant reduction of stress and anxiety levels in college students when listening to sedative piano music versus

My research aims to determine the effectiveness of meditation and sleep applications (apps) on the reduction of anxiety and stress in college students, with a focus on sedative piano music. Results showed a significant reduction of stress and anxiety levels in college students when listening to sedative piano music versus non-sedative piano music. Music along with other therapy modalities in meditation and sleep apps show promise in reducing students’ anxiety and stress and promoting their successes.

ContributorsPantha, Bidur (Author) / Brian, Jennifer (Thesis director) / Patten, Kristopher (Committee member) / School of Molecular Sciences (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

DNA nanotechnology, the self-assembly of DNA into 2D and 3D nanoscale structures facilitated via Watson and Crick base pairing, provides alternative solutions for biomedical challenges, especially for therapeutic cargo delivery, because it is easily fabricated, exhibits low cytotoxicity, and high biocompatibility. However, the stability of these DNA nanostructures (DN) under

DNA nanotechnology, the self-assembly of DNA into 2D and 3D nanoscale structures facilitated via Watson and Crick base pairing, provides alternative solutions for biomedical challenges, especially for therapeutic cargo delivery, because it is easily fabricated, exhibits low cytotoxicity, and high biocompatibility. However, the stability of these DNA nanostructures (DN) under cellular environment presents an issue due to their requirements for high salt conditions and susceptibility to nuclease degradation. Furthermore, DNs are typically trapped in endolysosomal compartments rather than the cytosol, where most of their cargo must be delivered. Many attempts to mitigate the stability issue have been made in recent years. Previously, our lab designed an endosomal escape peptide, Aurein 1.2 (denoted “EE, for endosomal escape)”, combined with a decalysine sequence (K10) proven to electrostatically adhere to and protect DNs under cell culture conditions. Unfortunately, this molecule, termed K10-EE, only resulted in endosomal escape in absence of serum due to formation of a protein corona on the surface of the coated DN.6 Therefore, we now propose to electrostatically coat the DN with a polymer composed of decalysine (K10), polyethylene glycol (PEG, which demonstrates antibiofouling properties), and peptide EE: K10- PEG1k-EE. Described herein are the attempted synthetic schemes of K10-PEG1k-EE, the successful synthesis of alternative products, K10-(EK)5 and K10-(PEG12)2-EE, and their resulting impacts on DN stability under biological conditions. Coating of the K10-(EK)5 with a DNA barrel origami demonstrated inefficient stabilizing capability in serum. Future studies include testing K10- (PEG12)2-EE protection for a variety of nucleic acid-based structures.

ContributorsChen, Eva (Author) / Stephanopoulos, Nicholas (Thesis director) / Liu, Yan (Committee member) / Ghirlanda, Giovanna (Committee member) / Barrett, The Honors College (Contributor) / School of Molecular Sciences (Contributor)
Created2023-05
Description

With climate change threatening to increase the frequency of global pandemics, the need for quick and adaptable responses to novel viruses will become paramount. DNA nanotechnology offers a highly customizable, biocompatible approach to combating novel outbreaks. For any DNA nanotechnology-based therapeutic to have future success in vivo, the structure must

With climate change threatening to increase the frequency of global pandemics, the need for quick and adaptable responses to novel viruses will become paramount. DNA nanotechnology offers a highly customizable, biocompatible approach to combating novel outbreaks. For any DNA nanotechnology-based therapeutic to have future success in vivo, the structure must be able to withstand serological conditions for an extended time period. In this study, the stability of a wireframe DNA snub cube with attached nbGFP used to bind a nonessential viral epitope on Pseudorabies virus is evaluated in vitro both with and without one of two modifications designed to enhance stability: 1) the use of trivalent spermidine cations during thermal annealing of the nanostructure, and 2) the introduction of a polylysine-polyethylene glycol coating to the conjugated nanostructure. The design, synthesis, and purification of the multivalent inhibitor were also evaluated and optimized. Without modification, the snub cube nanostructure was stable for up to 8 hours in culture media supplemented with 10% FBS. The spermidine-annealed nanostructures demonstrated lesser degrees of stability and greater degradation than the unmodified structures, whereas the polylysine-coated structures demonstrated equivalent stability at lower valencies and enhanced stability at the highest valency of the snub cube inhibitor. These results support the potential for the polylysine-polyethylene glycol coating as a potential method for enhancing the stability of the snub cube for future in vivo applications.

ContributorsLeff, Chloe (Author) / Hariadi, Rizal (Thesis director) / Stephanopoulos, Nicholas (Committee member) / Pradhan, Swechchha (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / School of Molecular Sciences (Contributor)
Created2023-05
131238-Thumbnail Image.png
Description
DNA nanotechnology uses the reliability of Watson-Crick base pairing to program and generate two-dimensional and three-dimensional nanostructures using single-stranded DNA as the structural material. DNA nanostructures show great promise for the future of bioengineering, as there are a myriad of potential applications that utilize DNA’s chemical interactivity and ability to

DNA nanotechnology uses the reliability of Watson-Crick base pairing to program and generate two-dimensional and three-dimensional nanostructures using single-stranded DNA as the structural material. DNA nanostructures show great promise for the future of bioengineering, as there are a myriad of potential applications that utilize DNA’s chemical interactivity and ability to bind other macromolecules and metals. DNA origami is a method of constructing nanostructures, which consists of a long “scaffold” strand folded into a shape by shorter “staple” oligonucleotides. Due to the negative charge of DNA molecules, divalent cations, most commonly magnesium, are required for origami to form and maintain structural integrity. The experiments in this paper address the discrepancy between salt concentrations required for origami stability and the salt concentrations present in living systems. The stability of three structures, a two-dimensional triangle, a three-dimensional solid cuboid and a three-dimensional wireframe icosahedron were examined in buffer solutions containing various concentrations of salts. In these experiments, DNA origami structures remained intact in low-magnesium conditions that emulate living cells, supporting their potential for widespread biological application in the future.
ContributorsSeverson, Grant William (Author) / Stephanopoulos, Nicholas (Thesis director) / Mills, Jeremy (Committee member) / School of Molecular Sciences (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
132606-Thumbnail Image.png
Description
Piloerection (known as goosebumps) is mediated by activation of alpha-adrenergic receptors within the sympathetic branch of the autonomic nervous system. The study of piloerection is important in multiple fields, from emotion studies to nervous system pathology. This makes piloerection particularly relevant to emotions research. Despite wide-ranging applications, current methods for

Piloerection (known as goosebumps) is mediated by activation of alpha-adrenergic receptors within the sympathetic branch of the autonomic nervous system. The study of piloerection is important in multiple fields, from emotion studies to nervous system pathology. This makes piloerection particularly relevant to emotions research. Despite wide-ranging applications, current methods for measuring piloerection are laborious and qualitative. The goal of this study is to build a wearable piloerection sensor through the use of straight-line lasers and photoresistors. The study analyzed methods of detecting and measuring goosebumps, and applied the method of laser scattering as a detection method. This device was designed and tested against a population of seven Arizona State University students. Goosebumps were elicited through conditions of cold, and video clips meant to elicit emotions of awe and sadness. Piloerection was then quantified through two controls of self-identification and camera recording, as well as the new detection method. These were then compared together, and it was found that subjective methods of determining goosebumps did not correlate well with objective measurements, but that the two objective measurements correlated well with one another. This shows that the technique of laser scattering can be used to detect goosebumps and further developments on this new detection method will be made. Moreover, the presence of uncorrelated subjective measurements further shows the need for an objective measurement of piloerection, while also bringing into question other factors that may be confused with the feeling of piloerection, such as chills or shivers. This study further reaffirmed previous studies showing a positive correlation between intense emotions.
ContributorsHemesath, Angela (Author) / Muthuswamy, Jitendran (Thesis director) / Shiota, Michelle (Lani) (Committee member) / Harrington Bioengineering Program (Contributor, Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
166175-Thumbnail Image.png
Description

STEAMtank is a project beneath that falls under the umbrella of InnovationSpace, an initiative of the Design School at Arizona State University. STEAMtank is the product of the product of the honors thesis of Abigail Peters, who envisioned a K-8 STEAM (science, technology, engineering, art, and math) museum that was

STEAMtank is a project beneath that falls under the umbrella of InnovationSpace, an initiative of the Design School at Arizona State University. STEAMtank is the product of the product of the honors thesis of Abigail Peters, who envisioned a K-8 STEAM (science, technology, engineering, art, and math) museum that was hosted on campus at ASU and was free to the community to promote STEAM education for underrepresented communities. STEAMtank is now in its second iteration, with six teams creating six attractions for the museum. Alongside these projects, presented here is a concept design for a museum exhibit focused entirely around chemistry, a particular branch of science that is lacking from all K-8 focused STEAM exhibits in Phoenix.

ContributorsFarrington, Logan (Author) / Hedges, Craig (Thesis director) / Reeves, James (Committee member) / Barrett, The Honors College (Contributor) / School of Molecular Sciences (Contributor)
Created2022-05
192734-Thumbnail Image.png
ContributorsLuca, Michael (Author) / Yan, Hao (Thesis director) / Stephanopoulos, Nicholas (Committee member) / Blattman, Joseph (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / School of International Letters and Cultures (Contributor) / School of Molecular Sciences (Contributor)
Created2024-05
Description
Cell immunotherapies have revolutionized clinical oncology. While CAR T cell therapy has been very effective in clinical studies, off-target immune toxicity limits eligible patients. Thus, NK cells have been approached with the same therapy design since NK cells have a more favorable safety profile. Therefore, the purpose of this research

Cell immunotherapies have revolutionized clinical oncology. While CAR T cell therapy has been very effective in clinical studies, off-target immune toxicity limits eligible patients. Thus, NK cells have been approached with the same therapy design since NK cells have a more favorable safety profile. Therefore, the purpose of this research project is to explore DNA nanotech-based NK cell engagers (NKCEs) that force an immunological synapse between the NK cell and the cancer cell, leading to cancer death. DNA tetrabody (TB) and DNA tetrahedron (TDN) are fabricated and armed with HER2 affibody for tight adhesion to HER2+ cancer cell lines like SKBR3. Overall, relationship between TB-NK treatment and cancer cell apoptosis is still unclear. TB-NK treatment induces an apoptotic profile similar to PMA/IO stimulation. Pilot cell assay needs to be replicated with additional controls and a shortened treatment window. For DNA TDN fabrication, HER2 affibody polishing with Ni-NTA affinity chromatography achieves high purity with 20% to 100% high-imidazole elution gradient. ssDNA-HER2 affibody conjugation is optimal when ssDNA is treated with 40-fold excess sulfo-SMCC for 4 hours. In conclusion, the manufacturing of DNA-based NKCEs is rapid and streamlined, which gives these NKCEs the potential to become a ready to use immunotherapy.
ContributorsLuca, Michael (Author) / Yan, Hao (Thesis director) / Stephanopoulos, Nicholas (Committee member) / Blattman, Joseph (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / School of International Letters and Cultures (Contributor) / School of Molecular Sciences (Contributor)
Created2024-05
192733-Thumbnail Image.png
ContributorsLuca, Michael (Author) / Yan, Hao (Thesis director) / Stephanopoulos, Nicholas (Committee member) / Blattman, Joseph (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / School of International Letters and Cultures (Contributor) / School of Molecular Sciences (Contributor)
Created2024-05