Matching Items (23)
Filtering by

Clear all filters

148215-Thumbnail Image.png
Description

Time studies are an effective tool to analyze current production systems and propose improvements. The problem that motivated the project was that conducting time studies and observing the progression of components across the factory floor is a manual process. Four Industrial Engineering students worked with a manufacturing company to develo

Time studies are an effective tool to analyze current production systems and propose improvements. The problem that motivated the project was that conducting time studies and observing the progression of components across the factory floor is a manual process. Four Industrial Engineering students worked with a manufacturing company to develop Computer Vision technology that would automate the data collection process for time studies. The team worked in an Agile environment to complete over 120 classification sets, create 8 strategy documents, and utilize Root Cause Analysis techniques to audit and validate the performance of the trained Computer Vision data models. In the future, there is an opportunity to continue developing this product and expand the team’s work scope to apply more engineering skills on the data collected to drive factory improvements.

ContributorsJohnson, Katelyn Rose (Co-author) / Martz, Emma (Co-author) / Chmelnik, Nathan (Co-author) / de Guzman, Lorenzo (Co-author) / Ju, Feng (Thesis director) / Courter, Brandon (Committee member) / Industrial, Systems & Operations Engineering Prgm (Contributor, Contributor) / Industrial, Systems & Operations Engineering Prgm (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148216-Thumbnail Image.png
Description

Time studies are an effective tool to analyze current production systems and propose improvements. The problem that motivated the project was that conducting time studies and observing the progression of components across the factory floor is a manual process. Four Industrial Engineering students worked with a manufacturing company to develo

Time studies are an effective tool to analyze current production systems and propose improvements. The problem that motivated the project was that conducting time studies and observing the progression of components across the factory floor is a manual process. Four Industrial Engineering students worked with a manufacturing company to develop Computer Vision technology that would automate the data collection process for time studies. The team worked in an Agile environment to complete over 120 classification sets, create 8 strategy documents, and utilize Root Cause Analysis techniques to audit and validate the performance of the trained Computer Vision data models. In the future, there is an opportunity to continue developing this product and expand the team’s work scope to apply more engineering skills on the data collected to drive factory improvements.

ContributorsChmelnik, Nathan (Co-author) / de Guzman, Lorenzo (Co-author) / Johnson, Katelyn (Co-author) / Martz, Emma (Co-author) / Ju, Feng (Thesis director) / Courter, Brandon (Committee member) / Industrial, Systems & Operations Engineering Prgm (Contributor, Contributor) / Industrial, Systems & Operations Engineering Prgm (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147540-Thumbnail Image.png
Description

Time studies are an effective tool to analyze current production systems and propose improvements. The problem that motivated the project was that conducting time studies and observing the progression of components across the factory floor is a manual process. Four Industrial Engineering students worked with a manufacturing company to develo

Time studies are an effective tool to analyze current production systems and propose improvements. The problem that motivated the project was that conducting time studies and observing the progression of components across the factory floor is a manual process. Four Industrial Engineering students worked with a manufacturing company to develop Computer Vision technology that would automate the data collection process for time studies. The team worked in an Agile environment to complete over 120 classification sets, create 8 strategy documents, and utilize Root Cause Analysis techniques to audit and validate the performance of the trained Computer Vision data models. In the future, there is an opportunity to continue developing this product and expand the team’s work scope to apply more engineering skills on the data collected to drive factory improvements.

ContributorsMartz, Emma Marie (Co-author) / de Guzman, Lorenzo (Co-author) / Johnson, Katelyn (Co-author) / Chmelnik, Nathan (Co-author) / Ju, Feng (Thesis director) / Courter, Brandon (Committee member) / Industrial, Systems & Operations Engineering Prgm (Contributor, Contributor) / Industrial, Systems & Operations Engineering Prgm (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148263-Thumbnail Image.png
Description

Time studies are an effective tool to analyze current production systems and propose improvements. The problem that motivated the project was that conducting time studies and observing the progression of components across the factory floor is a manual process. Four Industrial Engineering students worked with a manufacturing company to develo

Time studies are an effective tool to analyze current production systems and propose improvements. The problem that motivated the project was that conducting time studies and observing the progression of components across the factory floor is a manual process. Four Industrial Engineering students worked with a manufacturing company to develop Computer Vision technology that would automate the data collection process for time studies. The team worked in an Agile environment to complete over 120 classification sets, create 8 strategy documents, and utilize Root Cause Analysis techniques to audit and validate the performance of the trained Computer Vision data models. In the future, there is an opportunity to continue developing this product and expand the team’s work scope to apply more engineering skills on the data collected to drive factory improvements.

Contributorsde Guzman, Lorenzo (Co-author) / Chmelnik, Nathan (Co-author) / Martz, Emma (Co-author) / Johnson, Katelyn (Co-author) / Ju, Feng (Thesis director) / Courter, Brandon (Committee member) / Industrial, Systems & Operations Engineering Prgm (Contributor, Contributor) / School of Politics and Global Studies (Contributor) / Industrial, Systems & Operations Engineering Prgm (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
130865-Thumbnail Image.png
Description

The goal of this research was to identify why the federal government should invest in solar research and development, and which areas of solar improvement should be focused on. Motivation for this can be found in the pressing need to prevent and reverse the effects of climate change, the inevitability

The goal of this research was to identify why the federal government should invest in solar research and development, and which areas of solar improvement should be focused on. Motivation for this can be found in the pressing need to prevent and reverse the effects of climate change, the inevitability of fossil fuel resources eventually running out, and the economic and job creation potential which solar energy holds. Additionally, it is important to note that the best course of action will involve a split of funding between current solar rollout and energy grid updating, and the R&D listed in this research. Upon examination, it can be seen that an energy revolution, led by a federal solar jobs program and a Green New Deal, would be both an ethically and economically beneficial solution. A transition from existing fossil fuel infrastructure to renewable, solar-powered infrastructure would not only be possible but highly beneficial in many aspects, including massive job creation, a more affordable, renewable energy solution to replace coal-fired plants, and no fuel spending or negotiation required.<br/>When examining which areas of solar improvement to focus on for R&D funding, four primary areas were identified, with solutions presented for each. These areas for improvement are EM capture, EM conversion efficiency, energy storage capacity, and the prevention of overheating. For each of these areas of improvement, affordable solutions that would greatly improve the efficiency and viability of solar as a primary energy source were identified. The most notable area that should be examined is solar storage, which would allow solar PV panels to overcome their greatest real and perceived obstacle, which is the inconsistent power generation. Solar storage is easily attainable, and with enough storage capacity, excess solar energy which would otherwise be wasted during the day can be stored and used during the night or cloudy weather as necessary. Furthermore, the implementation of highly innovative solutions, such as agrivoltaics, would allow for a solar revolution to occur.

ContributorsWhitlow, Hunter Marshall (Author) / Fong, Benjamin (Thesis director) / Andino, Jean (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
131510-Thumbnail Image.png
Description
Engineering is a multidisciplinary field with a variety of applications. However, since there are so many disciplines of engineering, it is often challenging to find the discipline that best suits an individual interested in engineering. Not knowing which area of engineering most aligns to one’s interests is challenging when deciding

Engineering is a multidisciplinary field with a variety of applications. However, since there are so many disciplines of engineering, it is often challenging to find the discipline that best suits an individual interested in engineering. Not knowing which area of engineering most aligns to one’s interests is challenging when deciding on a major and a career. With the development of the Engineering Interest Quiz (EIQ), the goal was to help individuals find the field of engineering that is most similar to their interests. Initially, an Engineering Faculty Survey (EFS) was created to gather information from engineering faculty at Arizona State University (ASU) and to determine keywords that describe each field of engineering. With this list of keywords, the EIQ was developed. Data from the EIQ compared the engineering students’ top three results for the best engineering discipline for them with their current engineering major of study. The data analysis showed that 70% of the respondents had their major listed as one of the top three results they were given and 30% of the respondents did not have their major listed. Of that 70%, 64% had their current major listed as the highest or tied for the highest percentage and 36% had their major listed as the second or third highest percentage. Furthermore, the EIQ data was compared between genders. Only 33% of the male students had their current major listed as their highest percentage, but 55% had their major as one of their top three results. Women had higher percentages with 63% listing their current major as their highest percentage and 81% listing it in the top three of their final results.
ContributorsWagner, Avery Rose (Co-author) / Lucca, Claudia (Co-author) / Taylor, David (Thesis director) / Miller, Cindy (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
132393-Thumbnail Image.png
Description
Engineering has historically been dominated by White men. However, in modern history, engineering is becoming more diverse as the opportunity to pursue engineering has become accessible to people of all races and genders. Yet, college ready high school students from nontraditional backgrounds—women, ethnic minorities, first-generation-to-college students, and those with financial

Engineering has historically been dominated by White men. However, in modern history, engineering is becoming more diverse as the opportunity to pursue engineering has become accessible to people of all races and genders. Yet, college ready high school students from nontraditional backgrounds—women, ethnic minorities, first-generation-to-college students, and those with financial need—often lack exposure to engineering, thus reducing their likelihood to pursue a career in this field. To create engineering learning experiences that can be expanded to a traditional high school science classroom, the Young Engineers Shape the World program at Arizona State University was consulted. The Young Engineers Shape the World program encourages women, notably the most underrepresented group in the engineering field, as well as other students of diverse backgrounds, to pursue engineering. The goal of this effort was to create a 3-contact hour chemical engineering based learning experience to help students in grades 10-11 learn about an application of chemical engineering. Using knowledge of chemical engineering, a soil pH testing activity was created, simulating a typical high school chemistry science experiment. In addition to measuring pH, students were asked to build a modern garden that contained a physical barrier that could protect the garden from acid rain while still allowing sunlight to reach the plant. Student feedback was collected in the form of an experience evaluation survey after each experience. Students found that the soil-moisture quality testing and design of a protective barrier was engaging. However, an iterative curriculum redesign-implement-evaluate effort is needed to arrive at a robust chemical engineering based design learning experience.
ContributorsOtis, Timothy Kevin (Author) / Ganesh, Tirupalavanam (Thesis director) / Schoepf, Jared (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
131779-Thumbnail Image.png
Description
This thesis aims to incorporate exosomes into an electrospun scaffold for tissue engineering applications. The motivation for this work is to develop an implant to regenerate tissue for patients with laryngeal defects. It was determined that it is feasible to incorporate exosomes into an electrospun scaffold. This addition of exosomes

This thesis aims to incorporate exosomes into an electrospun scaffold for tissue engineering applications. The motivation for this work is to develop an implant to regenerate tissue for patients with laryngeal defects. It was determined that it is feasible to incorporate exosomes into an electrospun scaffold. This addition of exosomes does alter the scaffold properties, by decreasing the average fiber diameter by roughly a factor of three and increasing the average modulus by roughly a factor of two. Cells were cultured on a scaffold with exosomes incorporated and were found to proliferate more than on a scaffold alone. This research lays the groundwork for further developing and optimizing an electrospun scaffold with exosomes incorporated to elicit a tissue regenerative response.
ContributorsKennedy, Maeve (Author) / Pizziconi, Vincent (Thesis director) / McPhail, Michael (Committee member) / School of International Letters and Cultures (Contributor) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131736-Thumbnail Image.png
Description
Current methods measuring the consumption of prescription and illicit drugs are often hampered by innate limitations, the data is slow and often restricted, which can impact the relevance and robustness of the associated data. Here, wastewater-based epidemiology (WBE) was applied as an alternative metric to measure trends in the consumption

Current methods measuring the consumption of prescription and illicit drugs are often hampered by innate limitations, the data is slow and often restricted, which can impact the relevance and robustness of the associated data. Here, wastewater-based epidemiology (WBE) was applied as an alternative metric to measure trends in the consumption of twelve narcotics within a collegiate setting from January 2018 to May 2018 at a Southwestern U.S. university. The present follow-up study was designed to identify potential changes in the consumption patterns of prescription and illicit drugs as the academic year progressed. Samples were collected from two sites that capture nearly 100% of campus-generated wastewater. Seven consecutive 24-hour composite raw wastewater samples were collected each month (n = 68) from both locations. The study identified the average consumption of select narcotics, in units of mg/day/1000 persons in the following order: cocaine (528 ± 266), heroin (404 ± 315), methylphenidate (343 ± 396), amphetamine (308 ±105), ecstasy (MDMA; 114 ± 198), oxycodone (57 ± 28), methadone (58 ± 73), and codeine (84 ± 40). The consumption of oxycodone, methadone, heroin, and cocaine were identified as statistically lower in the Spring 2018 semester compared to the Fall 2017. Universities may need to increase drug education for the fall semester to lower the consumption of drugs in that semester. Data from this research encompasses both human health and the built environment by evaluating public health through collection of municipal wastewater, allowing public health officials rapid and robust narcotic consumption data while maintaining the anonymity of the students, faculty, and staff.
ContributorsCarlson, Alyssa Rose (Author) / Halden, Rolf (Thesis director) / Gushgari, Adam (Committee member) / School of Human Evolution & Social Change (Contributor) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131553-Thumbnail Image.png
Description

Accessible STEAM (Science, Technology, Engineering, Art, and Mathematics) education is imperative in creating the future innovators of the world. This business proposal is for a K-8 STEAM Museum to be built in the Novus Innovation Corridor on Arizona State University (ASU)’s Tempe campus. The museum will host dynamic spaces that

Accessible STEAM (Science, Technology, Engineering, Art, and Mathematics) education is imperative in creating the future innovators of the world. This business proposal is for a K-8 STEAM Museum to be built in the Novus Innovation Corridor on Arizona State University (ASU)’s Tempe campus. The museum will host dynamic spaces that are constantly growing and evolving as exhibits are built by interdisciplinary capstone student groups- creating an internal capstone project pipeline. The intention of the museum is to create an interactive environment that fosters curiosity and creativity while acting as supplemental learning material to Arizona K-8 curriculum. The space intends to serve the greater Phoenix area community and will cater to underrepresented audiences through the development of accessible education rooted in equality and inclusivity.

ContributorsPeters, Abigail J (Author) / McCarville, Daniel R. (Thesis director) / Juarez, Joseph (Committee member) / Industrial, Systems & Operations Engineering Prgm (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05