Matching Items (31)
Filtering by

Clear all filters

156151-Thumbnail Image.png
Description
Alloying in semiconductors has enabled many civilian technologies in optoelectronic, photonic fields and more. While the phenomenon of alloying is well established in traditional bulk semiconductors, owing to vastly available ternary phase diagrams, the ability to alloy in 2D systems are less clear. Recently anisotropic materials such as ReS2 and

Alloying in semiconductors has enabled many civilian technologies in optoelectronic, photonic fields and more. While the phenomenon of alloying is well established in traditional bulk semiconductors, owing to vastly available ternary phase diagrams, the ability to alloy in 2D systems are less clear. Recently anisotropic materials such as ReS2 and TiS3 have been extensively studied due to their direct-gap semiconductor and high mobility behaviors. This work is a report on alloys of ReS2 & ReSe2 and TiS3 &TiSe3.

Alloying selenium into ReS2 in the creation of ReS2xSe2-x, tunes the band gap and changes its vibrational spectrum. Depositing this alloy using bottom up approach has resulted in the loss of crystallinity. This loss of crystallinity was evidenced by grain boundaries and point defect shown by TEM images.

Also, in the creation of TiS3xSe3-x, by alloying Se into TiS3, a fixed ratio of 8% selenium deposit into TiS3 host matrix is observed. This is despite the vastly differing precursor amounts and growth temperatures, as evinced by detailed TEM, EDAX, TEM diffraction, and Raman spectroscopy measurements. This unusual behavior contrasts with other well-known layered material systems such as MoSSe, WMoS2 where continuous alloying can be attained. Cluster expansion theory calculations suggest that only limited composition (x) can be achieved. Considering the fact that TiSe3 vdW crystals have not been synthesized in the past, these alloying rejections can be attributed to energetic instability in the ternary phase diagrams estimated by calculations performed. Overall findings highlight potential means and challenges in achieving stable alloying in promising direct gap and high carrier mobility TiS3 materials.
ContributorsAgarwal, Ashutosh (Author) / Tongay, Sefaattin (Thesis advisor) / Green, Matthew (Committee member) / Zhuang, Houlong (Committee member) / Arizona State University (Publisher)
Created2018
156283-Thumbnail Image.png
Description
In this dissertation, three complex material systems including a novel class of hyperuniform composite materials, cellularized collagen gel and low melting point alloy (LMPA) composite are investigated, using statistical pattern characterization, stochastic microstructure reconstruction and micromechanical analysis. In Chapter 1, an introduction of this report is provided, in which a

In this dissertation, three complex material systems including a novel class of hyperuniform composite materials, cellularized collagen gel and low melting point alloy (LMPA) composite are investigated, using statistical pattern characterization, stochastic microstructure reconstruction and micromechanical analysis. In Chapter 1, an introduction of this report is provided, in which a brief review is made about these three material systems. In Chapter 2, detailed discussion of the statistical morphological descriptors and a stochastic optimization approach for microstructure reconstruction is presented. In Chapter 3, the lattice particle method for micromechanical analysis of complex heterogeneous materials is introduced. In Chapter 4, a new class of hyperuniform heterogeneous material with superior mechanical properties is investigated. In Chapter 5, a bio-material system, i.e., cellularized collagen gel is modeled using correlation functions and stochastic reconstruction to study the collective dynamic behavior of the embed tumor cells. In chapter 6, LMPA soft robotic system is generated by generalizing the correlation functions and the rigidity tunability of this smart composite is discussed. In Chapter 7, a future work plan is presented.
ContributorsXu, Yaopengxiao (Author) / Jiao, Yang (Thesis advisor) / Liu, Yongming (Committee member) / Wang, Qing Hua (Committee member) / Ren, Yi (Committee member) / Arizona State University (Publisher)
Created2018
156130-Thumbnail Image.png
Description
Two-dimensional transition metal dichalcogenides (TMDCs) such as

molybdenum disulfide (MoS2), tungsten disulfide (WS2), molybdenum diselenide (MoSe2) and tungsten diselenide (WSe2) are attractive for use in biotechnology, optical and electronics devices due to their promising and tunable electrical, optical and chemical properties. To fulfill the variety of requirements for different applications, chemical

Two-dimensional transition metal dichalcogenides (TMDCs) such as

molybdenum disulfide (MoS2), tungsten disulfide (WS2), molybdenum diselenide (MoSe2) and tungsten diselenide (WSe2) are attractive for use in biotechnology, optical and electronics devices due to their promising and tunable electrical, optical and chemical properties. To fulfill the variety of requirements for different applications, chemical treatment methods are developed to tune their properties. In this dissertation, plasma treatment, chemical doping and functionalization methods have been applied to tune the properties of TMDCs. First, plasma treatment of TMDCs results in doping and generation of defects, as well as the synthesis of transition metal oxides (TMOs) with rolled layers that have increased surface-to-volume ratio and are promising for electrochemical applications. Second, chemical functionalization is another powerful approach for tuning the properties of TMDCs for use in many applications. To covalently functionalize the basal planes of TMDCs, previous reports begin with harsh treatments like lithium intercalation that disrupt the structure and lead to a phase transformation from semiconducting to metallic. Instead, this work demonstrates the direct covalent functionalization of semiconducting MoS2 using aryl diazonium salts without lithium treatments. It preserves the structure and semiconducting nature of MoS2, results in covalent C-S bonds on basal planes and enables different functional groups to be tethered to the MoS2 surface via the diazonium salts. The attachment of fluorescent proteins has been used as a demonstration and it suggests future applications in biology and biosensing. The effects of the covalent functionalization on the electronic transport properties of MoS2 were then studied using field effect transistor (FET) devices.
ContributorsChu, Ximo (Author) / Wang, Qing Hua (Thesis advisor) / Sieradzki, Karl (Committee member) / Green, Alexander (Committee member) / Chan, Candace (Committee member) / Arizona State University (Publisher)
Created2018
156705-Thumbnail Image.png
Description
Flame retardants (FRs) are applied to variety of consumer products such as textiles and polymers for fire prevention and fire safety. Substantial research is ongoing to replace traditional FRs with alternative materials that are less toxic, present higher flame retardancy and result in lower overall exposure as there are potential

Flame retardants (FRs) are applied to variety of consumer products such as textiles and polymers for fire prevention and fire safety. Substantial research is ongoing to replace traditional FRs with alternative materials that are less toxic, present higher flame retardancy and result in lower overall exposure as there are potential health concerns in case of exposure to popular FRs. Carbonaceous nanomaterials (CNMs) such as carbon nanotubes (CNTs) and graphene oxide (GO) have been studied and applied to polymer composites and electronics extensively due to their remarkable properties. Hence CNMs are considered as potential alternative materials that present high flame retardancy. In this research, different kinds of CNMs coatings on polyester fabric are produced and evaluated for their use as flame retardants. To monitor the mass loading of CNMs coated on the fabric, a two-step analytical method for quantifying CNMs embedded in polymer composites was developed. This method consisted of polymer dissolution process using organic solvents followed by subsequent programmed thermal analysis (PTA). This quantification technique was applicable to CNTs with and without high metal impurities in a broad range of polymers. Various types of CNMs were coated on polyester fabric and the efficacy of coatings as flame retardant was evaluated. The oxygen content of CNMs emerged as a critical parameter impacting flame retardancy with higher oxygen content resulting in less FR efficacy. The most performant nanomaterials, multi-walled carbon nanotubes (MWCNTs) and amine functionalized multi-walled carbon nantoubes (NH2-MWCNT) showed similar FR properties to current flame retardants with low mass loading (0.18 g/m2) and hence are promising alternatives that warrant further investigation. Chemical/physical modification of MWCNTs was conducted to produce well-dispersed MWCNT solutions without involving oxygen for uniform FR coating. The MWCNTs coating was studied to evaluate the durability of the coating and the impact on the efficacy during use phase by conducting mechanical abrasion and washing test. Approximately 50% and 40% of MWCNTs were released from 1 set of mechanical abrasion and washing test respectively. The losses during simulated usage impacted the flame retardancy negatively.
ContributorsNosaka, Takayuki (Author) / Herckes, Pierre (Thesis advisor) / Westerhoff, Paul (Committee member) / Wang, Qing Hua (Committee member) / Arizona State University (Publisher)
Created2018
156760-Thumbnail Image.png
Description
Recently, two-dimensional (2D) materials have emerged as a new class of materials with highly attractive electronic, optical, magnetic, and thermal properties. However, there exists a sub-category of 2D layers wherein constituent metal atoms are arranged in a way that they form weakly coupled chains confined in the 2D landscape. These

Recently, two-dimensional (2D) materials have emerged as a new class of materials with highly attractive electronic, optical, magnetic, and thermal properties. However, there exists a sub-category of 2D layers wherein constituent metal atoms are arranged in a way that they form weakly coupled chains confined in the 2D landscape. These weakly coupled chains extend along particular lattice directions and host highly attractive properties including high thermal conduction pathways, high-mobility carriers, and polarized excitons. In a sense, these materials offer a bridge between traditional one-dimensional (1D) materials (nanowires and nanotubes) and 2D layered systems. Therefore, they are often referred as pseudo-1D materials, and are anticipated to impact photonics and optoelectronics fields.

This dissertation focuses on the novel growth routes and fundamental investigation of the physical properties of pseudo-1D materials. Example systems are based on transition metal chalcogenide such as rhenium disulfide (ReS2), titanium trisulfide (TiS3), tantalum trisulfide (TaS3), and titanium-niobium trisulfide (Nb(1-x)TixS3) ternary alloys. Advanced growth, spectroscopy, and microscopy techniques with density functional theory (DFT) calculations have offered the opportunity to understand the properties of these materials both experimentally and theoretically. The first controllable growth of ReS2 flakes with well-defined domain architectures has been established by a state-of-art chemical vapor deposition (CVD) method. High-resolution electron microscopy has offered the very first investigation into the structural pseudo-1D nature of these materials at an atomic level such as the chain-like features, grain boundaries, and local defects.

Pressure-dependent Raman spectroscopy and DFT calculations have investigated the origin of the Raman vibrational modes in TiS3 and TaS3, and discovered the unusual pressure response and its effect on Raman anisotropy. Interestingly, the structural and vibrational anisotropy can be retained in the Nb(1-x)TixS3 alloy system with the presence of phase transition at a nominal Ti alloying limit. Results have offered valuable experimental and theoretical insights into the growth routes as well as the structural, optical, and vibrational properties of typical pseudo-1D layered systems. The overall findings hope to shield lights to the understanding of this entire class of materials and benefit the design of 2D electronics and optoelectronics.
ContributorsWu, Kedi (Author) / Tongay, Sefaattin (Thesis advisor) / Zhuang, Houlong (Committee member) / Green, Matthew (Committee member) / Arizona State University (Publisher)
Created2018
156953-Thumbnail Image.png
Description
Advanced material systems refer to materials that are comprised of multiple traditional constituents but complex microstructure morphologies, which lead to their superior properties over conventional materials. This dissertation is motivated by the grand challenge in accelerating the design of advanced material systems through systematic optimization with respect to material microstructures

Advanced material systems refer to materials that are comprised of multiple traditional constituents but complex microstructure morphologies, which lead to their superior properties over conventional materials. This dissertation is motivated by the grand challenge in accelerating the design of advanced material systems through systematic optimization with respect to material microstructures or processing settings. While optimization techniques have mature applications to a large range of engineering systems, their application to material design meets unique challenges due to the high dimensionality of microstructures and the high costs in computing process-structure-property (PSP) mappings. The key to addressing these challenges is the learning of material representations and predictive PSP mappings while managing a small data acquisition budget. This dissertation thus focuses on developing learning mechanisms that leverage context-specific meta-data and physics-based theories. Two research tasks will be conducted: In the first, we develop a statistical generative model that learns to characterize high-dimensional microstructure samples using low-dimensional features. We improve the data efficiency of a variational autoencoder by introducing a morphology loss to the training. We demonstrate that the resultant microstructure generator is morphology-aware when trained on a small set of material samples, and can effectively constrain the microstructure space during material design. In the second task, we investigate an active learning mechanism where new samples are acquired based on their violation to a theory-driven constraint on the physics-based model. We demonstrate using a topology optimization case that while data acquisition through the physics-based model is often expensive (e.g., obtaining microstructures through simulation or optimization processes), the evaluation of the constraint can be far more affordable (e.g., checking whether a solution is optimal or equilibrium). We show that this theory-driven learning algorithm can lead to much improved learning efficiency and generalization performance when such constraints can be derived. The outcomes of this research is a better understanding of how physics knowledge about material systems can be integrated into machine learning frameworks, in order to achieve more cost-effective and reliable learning of material representations and predictive models, which are essential to accelerate computational material design.
ContributorsCang, Ruijin (Author) / Ren, Yi (Thesis advisor) / Liu, Yongming (Committee member) / Jiao, Yang (Committee member) / Nian, Qiong (Committee member) / Zhuang, Houlong (Committee member) / Arizona State University (Publisher)
Created2018
148001-Thumbnail Image.png
Description

High-entropy alloys possessing mechanical, chemical, and electrical properties that far exceed those of conventional alloys have the potential to make a significant impact on many areas of engineering. Identifying element combinations and configurations to form these alloys, however, is a difficult, time-consuming, computationally intensive task. Machine learning has revolutionized many

High-entropy alloys possessing mechanical, chemical, and electrical properties that far exceed those of conventional alloys have the potential to make a significant impact on many areas of engineering. Identifying element combinations and configurations to form these alloys, however, is a difficult, time-consuming, computationally intensive task. Machine learning has revolutionized many different fields due to its ability to generalize well to different problems and produce computationally efficient, accurate predictions regarding the system of interest. In this thesis, we demonstrate the effectiveness of machine learning models applied to toy cases representative of simplified physics that are relevant to high-entropy alloy simulation. We show these models are effective at learning nonlinear dynamics for single and multi-particle cases and that more work is needed to accurately represent complex cases in which the system dynamics are chaotic. This thesis serves as a demonstration of the potential benefits of machine learning applied to high-entropy alloy simulations to generate fast, accurate predictions of nonlinear dynamics.

ContributorsDaly, John H (Author) / Ren, Yi (Thesis director) / Zhuang, Houlong (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
168312-Thumbnail Image.png
Description
Stiffness and flexibility are essential in many fields, including robotics, aerospace, bioengineering, etc. In recent years, origami-based mechanical metamaterials were designed for better mechanical properties including tunable stiffness and tunable collapsibility. However, in existing studies, the tunable stiffness is only with limited range and limited controllability. To overcome these challenges,

Stiffness and flexibility are essential in many fields, including robotics, aerospace, bioengineering, etc. In recent years, origami-based mechanical metamaterials were designed for better mechanical properties including tunable stiffness and tunable collapsibility. However, in existing studies, the tunable stiffness is only with limited range and limited controllability. To overcome these challenges, two objectives were proposed and achieved in this dissertation: first, to design mechanical metamaterials with metamaterials with selective stiffness and collapsibility; second, to design mechanical metamaterials with in-situ tunable stiffness among positive, zero, and negative.In the first part, triangulated cylinder origami was employed to build deployable mechanical metamaterials through folding and unfolding along the crease lines. These deployable structures are flexible in the deploy direction so that it can be easily collapsed along the same way as it was deployed. An origami-inspired mechanical metamaterial was designed for on-demand deployability and selective collapsibility: autonomous deployability from the collapsed state and selective collapsibility along two different paths, with low stiffness for one path and substantially high stiffness for another path. The created mechanical metamaterial yields unprecedented load bearing capability in the deploy direction while possessing great deployability and collapsibility. The principle in this prospectus can be utilized to design and create versatile origami-inspired mechanical metamaterials that can find many applications. In the second part, curved origami patterns were designed to accomplish in situ stiffness manipulation covering positive, zero, and negative stiffness by activating predefined creases on one curved origami pattern. This elegant design enables in situ stiffness switching in lightweight and space-saving applications, as demonstrated through three robotic-related components. Under a uniform load, the curved origami can provide universal gripping, controlled force transmissibility, and multistage stiffness response. This work illustrates an unexplored and unprecedented capability of curved origami, which opens new applications in robotics for this particular family of origami patterns.
ContributorsZhai, Zirui (Author) / Nian, Qiong (Thesis advisor) / Zhuang, Houlong (Committee member) / Huang, Huei-Ping (Committee member) / Zhang, Wenlong (Committee member) / Liu, Yongming (Committee member) / Arizona State University (Publisher)
Created2021
168407-Thumbnail Image.png
Description
A Compact Linear Fresnel Reflector (CLFR) is a simple, cost-effective, and scalable option for generating solar power by concentrating the sun rays. To make a most feasible application, design parameters of the CLFR, such as solar concentrator design parameters, receiver design parameters, heat transfer, power block parameters, etc., should be

A Compact Linear Fresnel Reflector (CLFR) is a simple, cost-effective, and scalable option for generating solar power by concentrating the sun rays. To make a most feasible application, design parameters of the CLFR, such as solar concentrator design parameters, receiver design parameters, heat transfer, power block parameters, etc., should be optimized to achieve optimum efficiency. Many researchers have carried out modeling and optimization of CLFR with various numerical or analytical methods. However, often computational time and cost are significant in these existing approaches. This research attempts to address this issue by proposing a novel computational approach with the help of increased computational efficiency and machine learning. The approach consists of two parts: the algorithm and the machine learning model. The algorithm has been created to fulfill the requirement of the Monte Carlo Ray tracing method for CLFR collector simulation, which is a simplified version of the conventional ray-tracing method. For various configurations of the CLFR system, optical losses and optical efficiency are calculated by employing these design parameters, such as the number of mirrors, mirror length, mirror width, space between adjacent mirrors, and orientation angle of the CLFR system. Further, to reduce the computational time, a machine learning method is used to predict the optical efficiency for the various configurations of the CLFR system. This entire method is validated using an existing approach (SolTrace) for the optical losses and optical efficiency of a CLFR system. It is observed that the program requires 6.63 CPU-hours of computational time are required by the program to calculate efficiency. In contrast, the novel machine learning approach took only seconds to predict the optical efficiency with great accuracy. Therefore, this method can be used to optimize a CLFR system based on the location and land configuration with reduced computational time. This will be beneficial for CLFR to be a potential candidate for concentrating solar power option.
ContributorsLunagariya, Shyam (Author) / Phelan, Patrick (Thesis advisor) / Kwon, Beomjin (Committee member) / Zhuang, Houlong (Committee member) / Arizona State University (Publisher)
Created2021
168364-Thumbnail Image.png
Description
Laser powder bed fusion (LPBF) additive manufacturing (AM) has received widespread attention due to its ability to produce parts with complicated design and better surface finish compared to other additive techniques. LPBF uses a laser heat source to melt layers of powder particles and manufactures a part based on the

Laser powder bed fusion (LPBF) additive manufacturing (AM) has received widespread attention due to its ability to produce parts with complicated design and better surface finish compared to other additive techniques. LPBF uses a laser heat source to melt layers of powder particles and manufactures a part based on the CAD design. This process can benefit significantly through computational modeling. The objective of this thesis was to understand the thermal transport, and fluid flow phenomena of the process, and to optimize the main process parameters such as laser power and scan speed through a combination of computational, experimental, and statistical analysis. A multi-physics model was built using to model temperature profile, bead geometry and elemental evaporation in powder bed process using a non-gaussian interaction between laser heat source and metallic powder. Owing to the scarcity of thermo-physical properties of metallic powders in literature, thermal conductivity, diffusivity, and heat capacity was experimentally tested up to a temperature of 1400 degrees C. The values were used in the computational model, which improved the results significantly. The computational work was also used to assess the impact of fluid flow around melt pool. Dimensional analysis was conducted to determine heat transport mode at various laser power/scan speed combinations. Convective heat flow proved to be the dominant form of heat transfer at higher energy input due to violent flow of the fluid around the molten region, which can also create keyhole effect. The last part of the thesis focused on gaining useful information about several features of the bead area such as contact angle, porosity, voids and melt pool that were obtained using several combinations of laser power and scan speed. These features were quantified using process learning, which was then used to conduct a full factorial design that allows to estimate the effect of the process parameters on the output features. Both single and multi-response analysis are applied to analyze the output response. It was observed that laser power has more influential effect on all the features. Multi response analysis showed 150 W laser power and 200 mm/s produced bead with best possible features.
ContributorsAhsan, Faiyaz (Author) / Ladani, Leila (Thesis advisor) / Razmi, Jafar (Committee member) / Kwon, Beomjin (Committee member) / Nian, Qiong (Committee member) / Zhuang, Houlong (Committee member) / Arizona State University (Publisher)
Created2021