Matching Items (8)
Filtering by

Clear all filters

157146-Thumbnail Image.png
Description
There has been a growing emphasis on the education of future generations of engineers who will have to tackle complex, global issues that are sociotechnical in nature. The National Science Foundation invests millions of dollars in interdisciplinary engineering education research (EER) to create an innovative and inclusive culture aimed at

There has been a growing emphasis on the education of future generations of engineers who will have to tackle complex, global issues that are sociotechnical in nature. The National Science Foundation invests millions of dollars in interdisciplinary engineering education research (EER) to create an innovative and inclusive culture aimed at radical change in the engineering education system. This exploratory research sought to better understand ways of thinking to address complex educational challenges, specifically, in the context of engineering-social sciences collaborations. The mixed methods inquiry drew on the ways of thinking perspectives from sustainability education to adapt futures, values, systems, and strategic thinking to the context of EER. Using the adapted framework, nine engineer-social scientist dyads were interviewed to empirically understand conceptualizations and applications of futures, values, systems, and strategic thinking. The qualitative results informed an original survey instrument, which was distributed to a sample of 310 researchers nationwide. Valid responses (n = 111) were analyzed to uncover the number and nature of factors underlying the scales of futures, values, systems, and strategic thinking. Findings illustrate the correlated, multidimensional nature of ways of thinking. Results from the qualitative and quantitative phases were also analyzed together to make recommendations for policy, teaching, research, and future collaborations. The current research suggested that ways of thinking, while perceived as a concept in theory, can and should be used in practice. Futures, values, systems, and strategic thinking, when used in conjunction could be an important tool for researchers to frame decisions regarding engineering education problem/solution constellations.
ContributorsDalal, Medha (Author) / Archambault, Leanna M (Thesis advisor) / Carberry, Adam (Committee member) / Savenye, Wilhelmina (Committee member) / Arizona State University (Publisher)
Created2019
133717-Thumbnail Image.png
Description
Engineering is a heavily male-dominated field and females are significantly less likely to choose an engineering-related major or career path. At the age of six years old, females start believing that their male peers are smarter than them, leading them to pursue less ambitious careers. The children's book Lyla B.

Engineering is a heavily male-dominated field and females are significantly less likely to choose an engineering-related major or career path. At the age of six years old, females start believing that their male peers are smarter than them, leading them to pursue less ambitious careers. The children's book Lyla B. An Engineering Legacy was created to encourage more young girls to discover their own potential and pursue engineering as a career. To explore the efficacy of the book on its target consumers, a pilot study was performed with first and second grade children. The participants' engineering knowledge; fixed and failure mindset beliefs; STEM (Science, Technology, Engineering, and Math) interest, competency, and career aspirations; and stereotype beliefs were evaluated before and after being read the book to determine if the story has a positive impact on children. Additionally, the satisfaction of the participants towards both the book and main character were analyzed quantitatively and qualitatively. Overall, the results of the study suggest that the book has a positive impact on the interest and competency of STEM fields and the stereotype beliefs that the children had towards engineers. The study also suggests that the book decreases fixed and failure mindsets and that the participants were satisfied with the overall concept of the book and main character, Lyla.
ContributorsPiatak, Catherine (Co-author) / Seelhammer, Marissa Leigh (Co-author) / Torrence, Kelly (Co-author) / Miller, Cindy (Thesis director) / Jordan, Shawn (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
152210-Thumbnail Image.png
Description
The National Research Council developed and published the Framework for K-12 Science Education, a new set of concepts that many states were planning on adopting. Part of this new endeavor included a set of science and engineering crosscutting concepts to be incorporated into science materials and activities, a first in

The National Research Council developed and published the Framework for K-12 Science Education, a new set of concepts that many states were planning on adopting. Part of this new endeavor included a set of science and engineering crosscutting concepts to be incorporated into science materials and activities, a first in science standards history. With the recent development of the Framework came the arduous task of evaluating current lessons for alignment with the new crosscutting concepts. This study took on that task in a small, yet important area of available lessons on the internet. Lessons, to be used by K-12 educators and students, were produced by different organizations and research efforts. This study focused specifically on Earth science lessons as they related to earthquakes. To answer the question as to the extent current and available lessons met the new crosscutting concepts; an evaluation rubric was developed and used to examine teacher and student lessons. Lessons were evaluated on evidence of the science, engineering and application of the engineering for each of the seven crosscutting concepts in the Framework. Each lesson was also evaluated for grade level appropriateness to determine if the lesson was suitable for the intended grade level(s) designated by the lesson. The study demonstrated that the majority of lesson items contained science applications of the crosscutting concepts. However, few contained evidence of engineering applications of the crosscutting concepts. Not only was there lack of evidence for engineering examples of the crosscutting concepts, but a lack of application engineering concepts as well. To evaluate application of the engineering concepts, the activities were examined for characteristics of the engineering design process. Results indicated that student activities were limited in both the nature of the activity and the quantity of lessons that contained activities. The majority of lessons were found to be grade appropriate. This study demonstrated the need to redesign current lessons to incorporate more engineering-specific examples from the crosscutting concepts. Furthermore, it provided evidence the current model of material development was out dated and should be revised to include engineering concepts to meet the needs of the new science standards.
ContributorsSchwab, Patrick (Author) / Baker, Dale (Thesis advisor) / Semken, Steve (Committee member) / Jordan, Shawn (Committee member) / Arizona State University (Publisher)
Created2013
186267-Thumbnail Image.png
Description
The CNC mill is a highly valuable tool for engineering design, allowing for the creation of precise and complex metal parts. However, due to their high cost, many engineers do not have access to these machines until they enter industry, limiting the knowledge and experience of engineering students. This also

The CNC mill is a highly valuable tool for engineering design, allowing for the creation of precise and complex metal parts. However, due to their high cost, many engineers do not have access to these machines until they enter industry, limiting the knowledge and experience of engineering students. This also restricts the level of engineering design they can participate in as they are limited to lower strength materials and processes. To expand the possibilities for engineering students, hobbyists, and small businesses, we created a reliable and affordable desktop CNC mill. Our machine is capable of cutting non-ferrous metals such as aluminum with 70μm repeatable part precision and be compatible with coolant and vacuum systems.
ContributorsHodson, Kenneth (Author) / Altobelli, Seth (Co-author) / Jordan, Shawn (Thesis director) / Sweeney, Rhett (Committee member) / Barrett, The Honors College (Contributor) / Engineering Programs (Contributor)
Created2023-05
187762-Thumbnail Image.png
Description
In higher education, teacher empathy is a term that refers to the empathetic skills of teachers and has been researched since the 1980s. Multiple studies in fields such as medicine, nursing and psychology have shown that teacher empathy has reduced teacher burnout, improved teacher satisfaction and student performance. Within engineering

In higher education, teacher empathy is a term that refers to the empathetic skills of teachers and has been researched since the 1980s. Multiple studies in fields such as medicine, nursing and psychology have shown that teacher empathy has reduced teacher burnout, improved teacher satisfaction and student performance. Within engineering education, there is increased research on empathy in recent years, but primarily aimed at introducing and improving empathetic skills of engineering students. There is little research on teacher empathy within engineering education. In my current study, I explored the potential longitudinal impact in perception of teacher empathy among three engineering faculty members as they utilized empathetic actions while teaching a second-year engineering course. I also explored the motivations and challenges that could arise in teacher empathy implementation. I used the Model of Empathy Framework developed by Walther and colleagues to define the complex attributes of empathy in an engineering context. I chose Teacher Action Research (TAR) methodology to provide agency to my three participants and research with them instead of on them. TAR allowed the participants to choose the empathetic actions they want to implement and to iterate when they feel appropriate. I found that all three participants had positive outcomes in their classrooms. Reduced teacher burnout, improved teacher satisfaction, and better student performance were some of the major benefits of teacher empathy that aligned with prior research. Improved confidence in their empathetic skills was observed for two participants as they showed positive evolution of their perception about teacher empathy. The other participant did not have any significant longitudinal impact in perception but was able to increase the number of empathetic approaches he could use in his classroom. External situations such as classroom technology malfunctions, having meetings or classes immediately before a class and balancing between being empathetic and being tough were some of the major challenges. Findings indicate that similar positive benefits as found in other disciplines can be realized within engineering education. The outcome of this study could be used by Learning and Teaching Centers Department Heads and University Deans to expand the implementation of teacher empathy within a college or university setting.
ContributorsSundaram, Bala Vignesh (Author) / Kellam, Nadia (Thesis advisor) / Carberry, Adam (Committee member) / Artiles, Mayra (Committee member) / Arizona State University (Publisher)
Created2023
157584-Thumbnail Image.png
Description
Background – Among influential education reports, there is clear consensus that an expansive range of intrapersonal (e.g. self-regulation) and interpersonal competencies (e.g. empathy) highly influence educational and career success. Research on teaching and learning these competencies is limited in engineering education.

Purpose/Hypothesis – This dissertation study explores the impacts of

Background – Among influential education reports, there is clear consensus that an expansive range of intrapersonal (e.g. self-regulation) and interpersonal competencies (e.g. empathy) highly influence educational and career success. Research on teaching and learning these competencies is limited in engineering education.

Purpose/Hypothesis – This dissertation study explores the impacts of a mindfulness training program on first-year engineering students and aims to understand potential impacts on the development of intrapersonal and interpersonal competencies.

Design/Method – A four-session mindfulness-based training program was designed, developed, and facilitated to cultivate intrapersonal and interpersonal competencies. This study employed a multiphase mixed method design in which quantitative and qualitative data was collected from a total of 35 different students through a post survey (n=31), 3-month follow-up survey (n=29), and interviews (n=18). t-tests were used to evaluate the statistical significance of the program and a rigorous thematic analysis process was utilized to help explain the quantitative data.

Results – The results suggest that the majority of students became more mindful, which led to improved intrapersonal competencies (i.e. self-management, critical-thinking, focus, resilience, and well-being) and interpersonal competencies (i.e. empathy, communication, teamwork, and leadership).

Discussion / Conclusions – The study provides compelling evidence that mindfulness training can support the development of intrapersonal and interpersonal skills among engineering students, which can support their overall academic experience, as well as personal and professional development. Future design and development work will be needed to evaluate the integration and scalability potential of mindfulness training within engineering programs.
ContributorsHuerta, Mark Vincent (Author) / McKenna, Anna (Thesis advisor) / Pipe, Teri (Committee member) / Carberry, Adam (Committee member) / Arizona State University (Publisher)
Created2019
158655-Thumbnail Image.png
Description
A defining feature of many United States (U.S.) doctoral engineering programs is their large proportion of international students. Despite the large student body and the significant impacts that they bring to the U.S. education and economy, a scarcity of research on engineering doctoral students has taken into consideration the existence

A defining feature of many United States (U.S.) doctoral engineering programs is their large proportion of international students. Despite the large student body and the significant impacts that they bring to the U.S. education and economy, a scarcity of research on engineering doctoral students has taken into consideration the existence of international students and the consequential diversity in citizenship among all students. This study was designed to bridge the research gap to improve the understanding of sense of belonging from the perspective of international engineering doctoral students.

A multi-phase mixed methods research approach was taken for this study. The qualitative strand focused on international engineering doctoral students’ sense of belonging and its constructs. Semi-structured interview data were collected from eight international students enrolled at engineering doctoral programs at four different institutions. Thematic analysis and further literature review produced a conceptual structure of sense of belonging among international engineering doctoral students: authentic-self, problem behavior, academic self-efficacy, academic belonging, sociocultural belonging, and perceived institutional support.

The quantitative strand of this study broadened the study’s population to all engineering doctoral students, including domestic students, and conducted comparative analyses between international and domestic student groups. An instrument to measure the Engineering Doctoral Students’ Quality of Interaction (EDQI instrument) was developed while considering the multicultural nature of interactions and the discipline-specific characteristics of engineering doctoral programs. Survey data were collected from 653 engineering doctoral students (383 domestic and 270 international) at 36 R1 institutions across the U.S. Exploratory Factor Analysis results confirmed the construct validity and reliability of the data collected from the instrument and indicated the factor structures for the students’ perceived quality interactions among domestic and international student groups. A set of separate regression analyses results indicated the significance of having meaningful interactions to students’ sense of belonging and identified the groups of people who make significant impacts on students’ sense of belonging for each subgroup. The emergent findings provide an understanding of the similarities and differences in the contributors of sense of belonging between international and domestic students, which can be used to develop tailored support structures for specific student groups.
ContributorsLee, Eunsil (Author) / Bekki, Jennifer (Thesis advisor) / Carberry, Adam (Thesis advisor) / Kellam, Nadia (Committee member) / Arizona State University (Publisher)
Created2020
158477-Thumbnail Image.png
Description
This graduate thesis explains and discusses the background, methods, limitations, and future work of developing a low-budget, variable-length, Arduino-based robotics professional development program (PDP) for middle school or high school classrooms. This graduate thesis builds on prior undergraduate thesis work and conclusions. The main conclusions from the undergraduate thesis work

This graduate thesis explains and discusses the background, methods, limitations, and future work of developing a low-budget, variable-length, Arduino-based robotics professional development program (PDP) for middle school or high school classrooms. This graduate thesis builds on prior undergraduate thesis work and conclusions. The main conclusions from the undergraduate thesis work focused on reaching a larger teacher population along with providing a more robust robot design and construction. The end goal of this graduate thesis is to develop a PDP that reaches multiple teachers, involves a more robust robot design, and lasts beyond this developmental year. There have been many similar research studies and PDPs that have been tested and analyzed but do not fit the requirements of this graduate thesis. These programs provide some guidance in the creation of a new PDP. The overall method of the graduate thesis comes in four main phases: 1) setup, 2) pre-PDP phase, 3) PDP phase, and 4) post PDP phase. The setup focused primarily on funding, IRB approval, research, timeline development, and research question creation. The pre-PDP phase focused primarily on the development of new tailored-to-teacher content, a more robust robot design, and recruitment of participants. The PDP phase primarily focused on how the teachers perform and participate in the PDP. Lastly, the post PDP phase involved data analysis along with a resource development plan. The last post-PDP step is to consolidate all of the findings in a clear, concise, and coherent format for future work.
Contributorslerner, jonah (Author) / Carberry, Adam (Thesis advisor) / Walters, Molina (Committee member) / Jordan, Shawn (Committee member) / Arizona State University (Publisher)
Created2020