Matching Items (50)
Filtering by

Clear all filters

151803-Thumbnail Image.png
Description
Humans have an inherent capability of performing highly dexterous and skillful tasks with their arms, involving maintaining posture, movement and interacting with the environment. The latter requires for them to control the dynamic characteristics of the upper limb musculoskeletal system. Inertia, damping and stiffness, a measure of mechanical impedance, gives

Humans have an inherent capability of performing highly dexterous and skillful tasks with their arms, involving maintaining posture, movement and interacting with the environment. The latter requires for them to control the dynamic characteristics of the upper limb musculoskeletal system. Inertia, damping and stiffness, a measure of mechanical impedance, gives a strong representation of these characteristics. Many previous studies have shown that the arm posture is a dominant factor for determining the end point impedance in a horizontal plane (transverse plane). The objective of this thesis is to characterize end point impedance of the human arm in the three dimensional (3D) space. Moreover, it investigates and models the control of the arm impedance due to increasing levels of muscle co-contraction. The characterization is done through experimental trials where human subjects maintained arm posture, while perturbed by a robot arm. Moreover, the subjects were asked to control the level of their arm muscles' co-contraction, using visual feedback of their muscles' activation, in order to investigate the effect of the muscle co-contraction on the arm impedance. The results of this study showed a very interesting, anisotropic increase of the arm stiffness due to muscle co-contraction. This can lead to very useful conclusions about the arm biomechanics as well as many implications for human motor control and more specifically the control of arm impedance through muscle co-contraction. The study finds implications for the EMG-based control of robots that physically interact with humans.
ContributorsPatel, Harshil Naresh (Author) / Artemiadis, Panagiotis (Thesis advisor) / Berman, Spring (Committee member) / Helms Tillery, Stephen (Committee member) / Arizona State University (Publisher)
Created2013
131002-Thumbnail Image.png
Description
This thesis presents a process by which a controller used for collective transport tasks is qualitatively studied and probed for presence of undesirable equilibrium states that could entrap the system and prevent it from converging to a target state. Fields of study relevant to this project include dynamic system modeling,

This thesis presents a process by which a controller used for collective transport tasks is qualitatively studied and probed for presence of undesirable equilibrium states that could entrap the system and prevent it from converging to a target state. Fields of study relevant to this project include dynamic system modeling, modern control theory, script-based system simulation, and autonomous systems design. Simulation and computational software MATLAB and Simulink® were used in this thesis.
To achieve this goal, a model of a swarm performing a collective transport task in a bounded domain featuring convex obstacles was simulated in MATLAB/ Simulink®. The closed-loop dynamic equations of this model were linearized about an equilibrium state with angular acceleration and linear acceleration set to zero. The simulation was run over 30 times to confirm system ability to successfully transport the payload to a goal point without colliding with obstacles and determine ideal operating conditions by testing various orientations of objects in the bounded domain. An additional purely MATLAB simulation was run to identify local minima of the Hessian of the navigation-like potential function. By calculating this Hessian periodically throughout the system’s progress and determining the signs of its eigenvalues, a system could check whether it is trapped in a local minimum, and potentially dislodge itself through implementation of a stochastic term in the robot controllers. The eigenvalues of the Hessian calculated in this research suggested the model local minima were degenerate, indicating an error in the mathematical model for this system, which likely incurred during linearization of this highly nonlinear system.
Created2020-12
132937-Thumbnail Image.png
Description
In the next decade or so, there will be a shift in the industry of transportation across the world. Already today we have autonomous vehicles (AVs) tested in the Greater Phoenix area showing that the technology has improved to a level available to the public eye. Although this technology is

In the next decade or so, there will be a shift in the industry of transportation across the world. Already today we have autonomous vehicles (AVs) tested in the Greater Phoenix area showing that the technology has improved to a level available to the public eye. Although this technology is not yet released commercially (for the most part), it is being used and will continue to be used to develop a safer future. With a high incidence of human error causing accidents, many expect that autonomous vehicles will be safer than human drivers. They do still require driver attention and sometimes intervention to ensure safety, but for the most part are much safer. In just the United States alone, there were 40,000 deaths due to car accidents last year [1]. If traffic fatalities were considered a disease, this would be an epidemic. The technology behind autonomous vehicles will allow for a much safer environment and increased mobility and independence for people who cannot drive and struggle with public transport. There are many opportunities for autonomous vehicles in the transportation industry. Companies can save a lot more money on shipping by cutting the costs of human drivers and trucks on the road, even allowing for simpler drop shipments should the necessary AI be developed.Research is even being done by several labs at Arizona State University. For example, Dr. Spring Berman’s Autonomous Collective Systems Lab has been collaborating with Dr. Nancy Cooke of Human Systems Engineering to develop a traffic testbed, CHARTopolis, to study the risks of driver-AV interactions and the psychological effects of AVs on human drivers on a small scale. This testbed will be used by researchers from their labs and others to develop testing on reaction, trust, and user experience with AVs in a safe environment that simulates conditions similar to those experienced by full-size AVs. Using a new type of small robot that emulates an AV, developed in Dr. Berman’s lab, participants will be able to remotely drive around a model city environment and interact with other AV-like robots using the cameras and LiDAR sensors on the remotely driven robot to guide them.
Although these commercial and research systems are still in testing, it is important to understand how AVs are being marketed to the general public and how they are perceived, so that one day they may be effectively adopted into everyday life. People do not want to see a car they do not trust on the same roads as them, so the questions are: why don’t people trust them, and how can companies and researchers improve the trustworthiness of the vehicles?
ContributorsShuster, Daniel Nadav (Author) / Berman, Spring (Thesis director) / Cooke, Nancy (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132909-Thumbnail Image.png
Description
This thesis details the design and construction of a torque-controlled robotic gripper for use with the Pheeno swarm robotics platform. This project required expertise from several fields of study including: robotic design, programming, rapid prototyping, and control theory. An electronic Inertial Measurement Unit and a DC Motor were both used

This thesis details the design and construction of a torque-controlled robotic gripper for use with the Pheeno swarm robotics platform. This project required expertise from several fields of study including: robotic design, programming, rapid prototyping, and control theory. An electronic Inertial Measurement Unit and a DC Motor were both used along with 3D printed plastic components and an electronic motor control board to develop a functional open-loop controlled gripper for use in collective transportation experiments. Code was developed that effectively acquired and filtered rate of rotation data alongside other code that allows for straightforward control of the DC motor through experimentally derived relationships between the voltage applied to the DC motor and the torque output of the DC motor. Additionally, several versions of the physical components are described through their development.
ContributorsMohr, Brennan (Author) / Berman, Spring (Thesis director) / Ren, Yi (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / School for Engineering of Matter,Transport & Enrgy (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
133580-Thumbnail Image.png
Description
In this paper, we propose an autonomous throwing and catching system to be developed as a preliminary step towards the refinement of a robotic arm capable of improving strength and motor function in the limb. This will be accomplished by first autonomizing simpler movements, such as throwing a ball. In

In this paper, we propose an autonomous throwing and catching system to be developed as a preliminary step towards the refinement of a robotic arm capable of improving strength and motor function in the limb. This will be accomplished by first autonomizing simpler movements, such as throwing a ball. In this system, an autonomous thrower will detect a desired target through the use of image processing. The launch angle and direction necessary to hit the target will then be calculated, followed by the launching of the ball. The smart catcher will then detect the ball as it is in the air, calculate its expected landing location based on its initial trajectory, and adjust its position so that the ball lands in the center of the target. The thrower will then proceed to compare the actual landing position with the position where it expected the ball to land, and adjust its calculations accordingly for the next throw. By utilizing this method of feedback, the throwing arm will be able to automatically correct itself. This means that the thrower will ideally be able to hit the target exactly in the center within a few throws, regardless of any additional uncertainty in the system. This project will focus of the controller and image processing components necessary for the autonomous throwing arm to be able to detect the position of the target at which it will be aiming, and for the smart catcher to be able to detect the position of the projectile and estimate its final landing position by tracking its current trajectory.
ContributorsLundberg, Kathie Joy (Co-author) / Thart, Amanda (Co-author) / Rodriguez, Armando (Thesis director) / Berman, Spring (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133748-Thumbnail Image.png
Description
This research report investigates the feasibility of using RFID in Traffic Sign Recognition (TSR) Systems for autonomous vehicles, specifically driver-less cars. Driver-less cars are becoming more prominent in society but must be designed to integrate with the current transportation infrastructure. Current research in TSR systems use image processing as well

This research report investigates the feasibility of using RFID in Traffic Sign Recognition (TSR) Systems for autonomous vehicles, specifically driver-less cars. Driver-less cars are becoming more prominent in society but must be designed to integrate with the current transportation infrastructure. Current research in TSR systems use image processing as well as LIDAR to identify traffic signs, yet these are highly dependent on lighting conditions, camera quality and sign visibility. The read rates of current TSR systems in literature are approximately 96 percent. The usage of RFID in TSR systems can improve the performance of traditional TSR systems. An RFID TSR was designed for the Autonomous Pheeno Test-bed at the Arizona State University (ASU) Autonomous Collective Systems (ACS) Laboratory. The system was tested with varying parameters to see the effect of the parameters on the read rate. It was found that high reader strength and low tag distance had a maximum read rate of 96.3 percent, which is comparable to existing literature. It was proven that an RFID TSR can perform as well as traditional TSR systems, and has the capacity to improve accuracy when used alongside RGB cameras and LIDAR.
ContributorsMendoza, Madilyn Kido (Author) / Berman, Spring (Thesis director) / Yu, Hongbin (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
161595-Thumbnail Image.png
Description
With the substantial development of intelligent robots, human-robot interaction (HRI) has become ubiquitous in applications such as collaborative manufacturing, surgical robotic operations, and autonomous driving. In all these applications, a human behavior model, which can provide predictions of human actions, is a helpful reference that helps robots to achieve intelligent

With the substantial development of intelligent robots, human-robot interaction (HRI) has become ubiquitous in applications such as collaborative manufacturing, surgical robotic operations, and autonomous driving. In all these applications, a human behavior model, which can provide predictions of human actions, is a helpful reference that helps robots to achieve intelligent interaction with humans. The requirement elicits an essential problem of how to properly model human behavior, especially when individuals are interacting or cooperating with each other. The major objective of this thesis is to utilize the human intention decoding method to help robots enhance their performance while interacting with humans. Preliminary work on integrating human intention estimation with an HRI scenario is shown to demonstrate the benefit. In order to achieve this goal, the research topic is divided into three phases. First, a novel method of an online measure of the human's reliance on the robot, which can be estimated through the intention decoding process from human actions,is described. An experiment that requires human participants to complete an object-moving task with a robot manipulator was conducted under different conditions of distractions. A relationship is discovered between human intention and trust while participants performed a familiar task with no distraction. This finding suggests a relationship between the psychological construct of trust and joint physical coordination, which bridges the human's action to its mental states. Then, a novel human collaborative dynamic model is introduced based on game theory and bounded rationality, which is a novel method to describe human dyadic behavior with the aforementioned theories. The mutual intention decoding process was also considered to inform this model. Through this model, the connection between the mental states of the individuals to their cooperative actions is indicated. A haptic interface is developed with a virtual environment and the experiments are conducted with 30 human subjects. The result suggests the existence of mutual intention decoding during the human dyadic cooperative behaviors. Last, the empirical results show that allowing agents to have empathy in inference, which lets the agents understand that others might have a false understanding of their intentions, can help to achieve correct intention inference. It has been verified that knowledge about vehicle dynamics was also important to correctly infer intentions. A new courteous policy is proposed that bounded the courteous motion using its inferred set of equilibrium motions. A simulation, which is set to reproduce an intersection passing case between an autonomous car and a human driving car, is conducted to demonstrate the benefit of the novel courteous control policy.
ContributorsWang, Yiwei (Author) / Zhang, Wenlong (Thesis advisor) / Berman, Spring (Committee member) / Lee, Hyunglae (Committee member) / Ren, Yi (Committee member) / Yang, Yezhou (Committee member) / Arizona State University (Publisher)
Created2021
171530-Thumbnail Image.png
Description
Autonomous systems inevitably must interact with other surrounding systems; thus, algorithms for intention/behavior estimation are of great interest. This thesis dissertation focuses on developing passive and active model discrimination algorithms (PMD and AMD) with applications to set-valued intention identification and fault detection for uncertain/bounded-error dynamical systems. PMD uses the obtained

Autonomous systems inevitably must interact with other surrounding systems; thus, algorithms for intention/behavior estimation are of great interest. This thesis dissertation focuses on developing passive and active model discrimination algorithms (PMD and AMD) with applications to set-valued intention identification and fault detection for uncertain/bounded-error dynamical systems. PMD uses the obtained input-output data to invalidate the models, while AMD designs an auxiliary input to assist the discrimination process. First, PMD algorithms are proposed for noisy switched nonlinear systems constrained by metric/signal temporal logic specifications, including systems with lossy data modeled by (m,k)-firm constraints. Specifically, optimization-based algorithms are introduced for analyzing the detectability/distinguishability of models and for ruling out models that are inconsistent with observations at run time. On the other hand, two AMD approaches are designed for noisy switched nonlinear models and piecewise affine inclusion models, which involve bilevel optimization with integer variables/constraints in the inner/lower level. The first approach solves the inner problem using mixed-integer parametric optimization, whose solution is included when solving the outer problem/higher level, while the second approach moves the integer variables/constraints to the outer problem in a manner that retains feasibility and recasts the problem as a tractable mixed-integer linear programming (MILP). Furthermore, AMD algorithms are proposed for noisy discrete-time affine time-invariant systems constrained by disjunctive and coupled safety constraints. To overcome the issues associated with generalized semi-infinite constraints due to state-dependent input constraints and disjunctive safety constraints, several constraint reformulations are proposed to recast the AMD problems as tractable MILPs. Finally, partition-based AMD approaches are proposed for noisy discrete-time affine time-invariant models with model-independent parameters and output measurement that are revealed at run time. Specifically, algorithms with fixed and adaptive partitions are proposed, where the latter improves on the performance of the former by allowing the partitions to be optimized. By partitioning the operation region, the problem is solved offline, and partition trees are constructed which can be used as a `look-up table' to determine the optimal input depending on revealed information at run time.
ContributorsNiu, Ruochen (Author) / Yong, Sze Zheng S.Z. (Thesis advisor) / Berman, Spring (Committee member) / Ren, Yi (Committee member) / Zhang, Wenlong (Committee member) / Zhuang, Houlong (Committee member) / Arizona State University (Publisher)
Created2022
190725-Thumbnail Image.png
Description
Tire blowout often occurs during driving, which can suddenly disturb vehicle motions and seriously threaten road safety. Currently, there is still a lack of effective methods to mitigate tire blowout risks in everyday traffic, even for automated vehicles. To fundamentally study and systematically resolve the tire blowout issue for automated

Tire blowout often occurs during driving, which can suddenly disturb vehicle motions and seriously threaten road safety. Currently, there is still a lack of effective methods to mitigate tire blowout risks in everyday traffic, even for automated vehicles. To fundamentally study and systematically resolve the tire blowout issue for automated vehicles, a collaborative project between General Motors (GM) and Arizona State University (ASU) has been conducted since 2018. In this dissertation, three main contributions of this project will be presented. First, to explore vehicle dynamics with tire blowout impacts and establish an effective simulation platform for close-loop control performance evaluation, high-fidelity tire blowout models are thoroughly developed by explicitly considering important vehicle parameters and variables. Second, since human cooperation is required to control Level 2/3 partially automated vehicles (PAVs), novel shared steering control schemes are specifically proposed for tire blowout to ensure safe vehicle stabilization via cooperative driving. Third, for Level 4/5 highly automated vehicles (HAVs) without human control, the development of control-oriented vehicle models, controllability study, and automatic control designs are performed based on impulsive differential systems (IDS) theories. Co-simulations Matlab/Simulink® and CarSim® are conducted to validate performances of all models and control designs proposed in this dissertation. Moreover, a scaled test vehicle at ASU and a full-size test vehicle at GM are well instrumented for data collection and control implementation. Various tire blowout experiments for different scenarios are conducted for more rigorous validations. Consequently, the proposed high-fidelity tire blowout models can correctly and more accurately describe vehicle motions upon tire blowout. The developed shared steering control schemes for PAVs and automatic control designs for HAVs can effectively stabilize a vehicle to maintain path following performance in the driving lane after tire blowout. In addition to new research findings and developments in this dissertation, a pending patent for tire blowout detection is also generated in the tire blowout project. The obtained research results have attracted interest from automotive manufacturers and could have a significant impact on driving safety enhancement for automated vehicles upon tire blowout.
ContributorsLi, Ao (Author) / Chen, Yan (Thesis advisor) / Berman, Spring (Committee member) / Kannan, Arunachala Mada (Committee member) / Liu, Yongming (Committee member) / Lin, Wen-Chiao (Committee member) / Marvi, Hamidreza (Committee member) / Arizona State University (Publisher)
Created2023
190794-Thumbnail Image.png
Description
As the explorations beyond the Earth's boundaries continue to evolve, researchers and engineers strive to develop versatile technologies capable of adapting to unknown space conditions. For instance, the utilization of Screw-Propelled Vehicles (SPVs) and robotics that utilize helical screws propulsion to transverse planetary bodies is a growing area of interest.

As the explorations beyond the Earth's boundaries continue to evolve, researchers and engineers strive to develop versatile technologies capable of adapting to unknown space conditions. For instance, the utilization of Screw-Propelled Vehicles (SPVs) and robotics that utilize helical screws propulsion to transverse planetary bodies is a growing area of interest. An example of such technology is the Extant Exobiology Life Surveyor (EELS), a snake-like robot currently developed by the NASA Jet Propulsion Laboratory (JPL) to explore the surface of Saturn’s moon, Enceladus. However, the utilization of such a mechanism requires a deep and thorough understanding of screw mobility in uncertain conditions. The main approach to exploring screw dynamics and optimal design involves the utilization of Discrete Element Method (DEM) simulations to assess interactions and behavior of screws when interacting with granular terrains. In this investigation, the Simplified Johnson-Kendall-Roberts (SJKR) model is implemented into the utilized simulation environment to account for cohesion effects similar to what is experienced on celestial bodies like Enceladus. The model is verified and validated through experimental and theoretical testing. Subsequently, the performance characteristics of screws are explored under varying parameters, such as thread depth, number of screw starts, and the material’s cohesion level. The study has examined significant relationships between the parameters under investigation and their influence on the screw performance.
ContributorsAbdelrahim, Mohammad (Author) / Marvi, Hamid (Thesis advisor) / Berman, Spring (Committee member) / Lee, Hyunglae (Committee member) / Arizona State University (Publisher)
Created2023