Matching Items (75)
Filtering by

Clear all filters

Description

This thesis explores the potential for software to act as an educational experience for engineers who are learning system dynamics and controls. The specific focus is a spring-mass-damper system. First, a brief introduction of the spring-mass-damper system is given, followed by a review of the background and prior work concerning

This thesis explores the potential for software to act as an educational experience for engineers who are learning system dynamics and controls. The specific focus is a spring-mass-damper system. First, a brief introduction of the spring-mass-damper system is given, followed by a review of the background and prior work concerning this topic. Then, the methodology and main approaches of the system are explained, as well as a more technical overview of the program. Lastly, a conclusion and discussion of potential future work is covered. The project was found to be useful by several engineers who tested it. While there is still plenty of functionality to add, it is a promising first attempt at teaching engineers through software development.

ContributorsRobbins, Alexander Kalani (Author) / Kobayashi, Yoshihiro (Thesis director) / Benson, David (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148001-Thumbnail Image.png
Description

High-entropy alloys possessing mechanical, chemical, and electrical properties that far exceed those of conventional alloys have the potential to make a significant impact on many areas of engineering. Identifying element combinations and configurations to form these alloys, however, is a difficult, time-consuming, computationally intensive task. Machine learning has revolutionized many

High-entropy alloys possessing mechanical, chemical, and electrical properties that far exceed those of conventional alloys have the potential to make a significant impact on many areas of engineering. Identifying element combinations and configurations to form these alloys, however, is a difficult, time-consuming, computationally intensive task. Machine learning has revolutionized many different fields due to its ability to generalize well to different problems and produce computationally efficient, accurate predictions regarding the system of interest. In this thesis, we demonstrate the effectiveness of machine learning models applied to toy cases representative of simplified physics that are relevant to high-entropy alloy simulation. We show these models are effective at learning nonlinear dynamics for single and multi-particle cases and that more work is needed to accurately represent complex cases in which the system dynamics are chaotic. This thesis serves as a demonstration of the potential benefits of machine learning applied to high-entropy alloy simulations to generate fast, accurate predictions of nonlinear dynamics.

ContributorsDaly, John H (Author) / Ren, Yi (Thesis director) / Zhuang, Houlong (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
137210-Thumbnail Image.png
Description
The exhaust system is an integral part of any internal combustion engine. A well- designed exhaust system efficiently removes exhaust gasses expelled from the cylinders. If tuned for performance purposes, the exhaust system can also exhibit scavenging and supercharging characteristics. This project reviews the major components of an exhaust system

The exhaust system is an integral part of any internal combustion engine. A well- designed exhaust system efficiently removes exhaust gasses expelled from the cylinders. If tuned for performance purposes, the exhaust system can also exhibit scavenging and supercharging characteristics. This project reviews the major components of an exhaust system and discusses the proper design techniques necessary to utilize the performance boosting potential of a tuned exhaust system for a four-stroke engine. These design considerations are then applied to Arizona State University's Formula SAE vehicle by comparing the existing system to a properly tuned system. An inexpensive testing method, developed specifically for this project, is used to test the effectiveness of the current design. The results of the test determined that the current design is ineffective at scavenging neighboring pipes of exhaust gasses and should be redesigned for better performance.
ContributorsKnutsen, Jeffrey Scott (Author) / Huang, Huei-Ping (Thesis director) / Steele, Bruce (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2014-05
136098-Thumbnail Image.png
Description
In order to discover if Company X's current system of local trucking is the most efficient and cost-effective way to move freight between sites in the Western U.S., we will compare the current system to varying alternatives to see if there are potential avenues for Company X to create or

In order to discover if Company X's current system of local trucking is the most efficient and cost-effective way to move freight between sites in the Western U.S., we will compare the current system to varying alternatives to see if there are potential avenues for Company X to create or implement an improved cost saving freight movement system.
ContributorsPicone, David (Co-author) / Krueger, Brandon (Co-author) / Harrison, Sarah (Co-author) / Way, Noah (Co-author) / Simonson, Mark (Thesis director) / Hertzel, Michael (Committee member) / Barrett, The Honors College (Contributor) / Department of Supply Chain Management (Contributor) / Department of Finance (Contributor) / Economics Program in CLAS (Contributor) / School of Accountancy (Contributor) / W. P. Carey School of Business (Contributor) / Sandra Day O'Connor College of Law (Contributor)
Created2015-05
136099-Thumbnail Image.png
Description
Company X is one of the world's largest semiconductor companies in the world, having a current market capitalization of 177.44 Billion USD, an enterprise value of 173.6 Billion USD, and generated 52.7 billion USD in revenue in fiscal year 2013. Recently, Company X has been looking to expand its Foundry

Company X is one of the world's largest semiconductor companies in the world, having a current market capitalization of 177.44 Billion USD, an enterprise value of 173.6 Billion USD, and generated 52.7 billion USD in revenue in fiscal year 2013. Recently, Company X has been looking to expand its Foundry business. The Foundry business in the semiconductor business is the actual process of making the chips. This process can be approached in several different ways by companies who need their chips built. A company, like TSMC, can be considered a pure-play company and only makes chips for other companies. A fabless company, like Apple, creates its own chip design and then allows another company to build them. It also uses other chip designs for its products, but outsources the building to another company. Lastly, the integrated device manufacturing companies like Samsung or Company X both design and build the chip. The foundry industry is a rather novel market for Company X because it owns less than 1 percent of the market. However, the industry itself is rather large, generating a total of 40 billion dollars in revenue annually, with expectations to have increasing year over year growth into the foreseeable future. The industry is fairly concentrated with TSMC being the top competitor, owning roughly 50 percent of the market with Samsung and Global Foundries lagging behind as notable competitors. It is a young industry and there is potential opportunity for companies that want to get into the business. For Company X, it is not only another market to get into, but also an added business segment to supplant their business segments that are forecasted to do poorly in the near future. This thesis will analyze the financial opportunity for Company X in the foundry space. Our final product is a series of P&L's which illustrate our findings. The results of our analysis were presented and defended in front of a panel of Company X managers and executives.
ContributorsJones, Trevor (Author) / Matiski, Matthew (Co-author) / Green, Alex (Co-author) / Simonson, Mark (Thesis director) / Hertzel, Michael (Committee member) / Department of Finance (Contributor) / W. P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2015-05
136471-Thumbnail Image.png
Description
The rationale behind this thesis is grounded in nearly two years of experience interning at UTC Aerospace Systems (UTAS). I was able to gain a wide exposure to different facets of the supply chain management organization during my time as an intern, from strategic sourcing and commodity management, to tactical

The rationale behind this thesis is grounded in nearly two years of experience interning at UTC Aerospace Systems (UTAS). I was able to gain a wide exposure to different facets of the supply chain management organization during my time as an intern, from strategic sourcing and commodity management, to tactical procurement and supplier development. In each of these respective areas, I observed a variety of initiatives that did not reach their full potential because employees were not provided the tools for success. One of these areas in particular is the New Product Introduction (NPI) process management, in which there is not a standard process for program managers to follow from start to finish. I saw this as an opportunity to hone in the scope of my thesis research and experience at UTAS to improve a process and provide standard work and tools for it to be consistently executed. The current state process is not formalized \u2014 it merely tracks certain metrics that are not necessarily applicable to the overall health of the program because they do not monitor the progress of the program. This resulted in heavy costs incurred from inadequate planning, a skewed timeline, and customer frustration. The aim of the desired state NPI process is to gather cross-functional expertise and weigh in, adhere to a strict entry to market timeline, and increase customer satisfaction, all while minimizing costs incurred throughout the life of the program. The dominant output of this project will be a cross-functional flow chart of the process for each group to follow and standard work and tools to support the process across a variety of NPI program applications.
ContributorsThorn, Taylor Aiko Marie (Author) / Brown, Steven (Thesis director) / Arrigoni, Gregory (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / Department of Supply Chain Management (Contributor) / W. P. Carey School of Business (Contributor)
Created2015-05
136181-Thumbnail Image.png
Description
A robotic exploration mission that would enter a lunar pit to characterize the environment is described. A hopping mechanism for the robot's mobility is proposed. Various methods of hopping drawn from research literature are discussed in detail. The feasibilities of mechanical, electric, fluid, and combustive methods are analyzed. Computer simulations

A robotic exploration mission that would enter a lunar pit to characterize the environment is described. A hopping mechanism for the robot's mobility is proposed. Various methods of hopping drawn from research literature are discussed in detail. The feasibilities of mechanical, electric, fluid, and combustive methods are analyzed. Computer simulations show the mitigation of the risk of complex autonomous navigation systems. A mechanical hopping mechanism is designed to hop in Earth gravity and carry a payload half its mass. A physical experiment is completed and proves a need for further refinement of the prototype design. Future work is suggested to continue exploring hopping as a mobility method for the lunar robot.
ContributorsMcKinney, Tyler James (Author) / Thangavelautham, Jekan (Thesis director) / Robinson, Mark (Committee member) / Asphaug, Erik (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2015-05
136204-Thumbnail Image.png
Description
This thesis investigates the viability of a solar still for desalination of a personal water supply. The end goal of the project is to create a design that meets the output requirement while tailoring the components to focus on low cost so it would be feasible in the impoverished areas

This thesis investigates the viability of a solar still for desalination of a personal water supply. The end goal of the project is to create a design that meets the output requirement while tailoring the components to focus on low cost so it would be feasible in the impoverished areas of the world. The primary requirement is an output of 3 liters of potable water per day, the minimum necessary for an adult human. The study examines the effect of several design parameters, such as the basin material, basin thickness, starting water depth, basin dimensions, cover material, cover angle, and cover thickness. A model for the performance of a solar still was created in MATLAB to simulate the system's behavior and sensitivity to these parameters. An instrumented prototype solar still demonstrated viability of the concept and provided data for validation of the MATLAB model.
ContributorsRasmussen, Dylan James (Author) / Wells, Valana (Thesis director) / Trimble, Steven (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2015-05
135890-Thumbnail Image.png
Description
This paper explores the history of sovereign debt default in developing economies and attempts to highlight the mistakes and accomplishments toward achieving debt sustainability. In the past century, developing economies have received considerable investment due to higher returns and a degree of disregard for the risks accompanying these investments. As

This paper explores the history of sovereign debt default in developing economies and attempts to highlight the mistakes and accomplishments toward achieving debt sustainability. In the past century, developing economies have received considerable investment due to higher returns and a degree of disregard for the risks accompanying these investments. As the former Citibank chairman, Walter Wriston articulated, "Countries don't go bust" (This Time is Different, 51). Still, unexpected negative externalities have shattered this idea as the majority of developing economies follow a cyclical pattern of default. As coined by Reinhart and Rogoff, sovereign governments that fall into this continuous cycle have become known as serial defaulters. Most developed markets have not defaulted since World War II, thus escaping this persistent trap. Still, there have been developing economies that have been able to transition out of serial defaulting. These economies are able to leverage debt to compound growth without incurring the protracted consequences of a default. Although the cases are few, we argue that developing markets such as Chile, Mexico, Russia, and Uruguay have been able to escape this vicious cycle. Thus, our research indicates that collaborative debt restructurings coupled with long term economic policies are imperative to transitioning out of debt intolerance and into a sustainable debt position. Successful economies are able to leverage debt to create strong foundational growth rather than gambling with debt in the hopes of achieving rapid catch- up growth.
ContributorsPitt, Ryan (Co-author) / Martinez, Nick (Co-author) / Choueiri, Robert (Co-author) / Goegan, Brian (Thesis director) / Silverman, Daniel (Committee member) / Department of Economics (Contributor) / Department of Information Systems (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / School of Politics and Global Studies (Contributor) / W. P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2015-12
135895-Thumbnail Image.png
Description
The purpose of this honors thesis is to discover ways for a large humanitarian organization to more cost effectively manage its fleet of vehicles. The first phase of work involved cleaning the large data set provided by the organization. Next, we used the program STATA to run a Seemingly Unrelated

The purpose of this honors thesis is to discover ways for a large humanitarian organization to more cost effectively manage its fleet of vehicles. The first phase of work involved cleaning the large data set provided by the organization. Next, we used the program STATA to run a Seemingly Unrelated Regression (SUR) to see which variables have the largest effect on the percentage of price decline and total mileage of each vehicle. The SUR model indicated that price decline is most influenced by cumulative minor repairs, total accessories, age, percentage of paved roads, and number of accidents. In addition, total mileage was most affected by percentage of paved roads, cumulative minor repairs, all wheel drive, and age. The final step of the project involved providing recommendations to the humanitarian organization based on the above results. We recommend several changes to their fleet management, including: driver training programs, increasing the amount of preventative maintenance performed on vehicles, and increasing the amount of accessories purchased for each vehicle. Implementing these changes could potentially save the organization millions of dollars due to the scope of its operation.
ContributorsPisauro, Jeffrey (Co-author) / Miller, Michael (Co-author) / Eftekhar, Mahyar (Thesis director) / Maltz, Arnold (Committee member) / Fowler, John (Committee member) / Department of Supply Chain Management (Contributor) / W. P. Carey School of Business (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2015-12