Matching Items (259)
Filtering by

Clear all filters

148121-Thumbnail Image.png
Description

This thesis proposes hardware and software security enhancements to the robotic explorer of a capstone team, in collaboration with the NASA Psyche Mission Student Collaborations program. The NASA Psyche Mission, launching in 2022 and reaching the metallic asteroid of the same name in 2026, will explore from orbit what is

This thesis proposes hardware and software security enhancements to the robotic explorer of a capstone team, in collaboration with the NASA Psyche Mission Student Collaborations program. The NASA Psyche Mission, launching in 2022 and reaching the metallic asteroid of the same name in 2026, will explore from orbit what is hypothesized to be remnant core material of an early planet, potentially providing key insights to planet formation. Following this initial mission, it is possible there would be scientists and engineers interested in proposing a mission to land an explorer on the surface of Psyche to further document various properties of the asteroid. As a proposal for a second mission, an interdisciplinary engineering and science capstone team at Arizona State University designed and constructed a robotic explorer for the hypothesized surfaces of Psyche, capable of semi-autonomously navigating simulated surfaces to collect scientific data from onboard sensors. A critical component of this explorer is the command and data handling subsystem, and as such, the security of this system, though outside the scope of the capstone project, remains a crucial consideration. This thesis proposes the pairing of Trusted Platform Module (TPM) technology for increased hardware security and the implementation of SELinux (Security Enhanced Linux) for increased software security for Earth-based testing as well as space-ready missions.

ContributorsAnderson, Kelly Joanne (Author) / Bowman, Catherine (Thesis director) / Kozicki, Michael (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

This thesis explores the potential for software to act as an educational experience for engineers who are learning system dynamics and controls. The specific focus is a spring-mass-damper system. First, a brief introduction of the spring-mass-damper system is given, followed by a review of the background and prior work concerning

This thesis explores the potential for software to act as an educational experience for engineers who are learning system dynamics and controls. The specific focus is a spring-mass-damper system. First, a brief introduction of the spring-mass-damper system is given, followed by a review of the background and prior work concerning this topic. Then, the methodology and main approaches of the system are explained, as well as a more technical overview of the program. Lastly, a conclusion and discussion of potential future work is covered. The project was found to be useful by several engineers who tested it. While there is still plenty of functionality to add, it is a promising first attempt at teaching engineers through software development.

ContributorsRobbins, Alexander Kalani (Author) / Kobayashi, Yoshihiro (Thesis director) / Benson, David (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148043-Thumbnail Image.png
Description

Automated vehicles are becoming more prevalent in the modern world. Using platoons of automated vehicles can have numerous benefits including increasing the safety of drivers as well as streamlining roadway operations. How individual automated vehicles within a platoon react to each other is essential to creating an efficient method of

Automated vehicles are becoming more prevalent in the modern world. Using platoons of automated vehicles can have numerous benefits including increasing the safety of drivers as well as streamlining roadway operations. How individual automated vehicles within a platoon react to each other is essential to creating an efficient method of travel. This paper looks at two individual vehicles forming a platoon and tracks the time headway between the two. Several speed profiles are explored for the following vehicle including a triangular and trapezoidal speed profile. It is discovered that a safety violation occurs during platoon formation where the desired time headway between the vehicles is violated. The aim of this research is to explore if this violation can be eliminated or reduced through utilization of different speed profiles.

ContributorsLarson, Kurt Gregory (Author) / Lou, Yingyan (Thesis director) / Chen, Yan (Committee member) / Civil, Environmental and Sustainable Eng Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148001-Thumbnail Image.png
Description

High-entropy alloys possessing mechanical, chemical, and electrical properties that far exceed those of conventional alloys have the potential to make a significant impact on many areas of engineering. Identifying element combinations and configurations to form these alloys, however, is a difficult, time-consuming, computationally intensive task. Machine learning has revolutionized many

High-entropy alloys possessing mechanical, chemical, and electrical properties that far exceed those of conventional alloys have the potential to make a significant impact on many areas of engineering. Identifying element combinations and configurations to form these alloys, however, is a difficult, time-consuming, computationally intensive task. Machine learning has revolutionized many different fields due to its ability to generalize well to different problems and produce computationally efficient, accurate predictions regarding the system of interest. In this thesis, we demonstrate the effectiveness of machine learning models applied to toy cases representative of simplified physics that are relevant to high-entropy alloy simulation. We show these models are effective at learning nonlinear dynamics for single and multi-particle cases and that more work is needed to accurately represent complex cases in which the system dynamics are chaotic. This thesis serves as a demonstration of the potential benefits of machine learning applied to high-entropy alloy simulations to generate fast, accurate predictions of nonlinear dynamics.

ContributorsDaly, John H (Author) / Ren, Yi (Thesis director) / Zhuang, Houlong (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147814-Thumbnail Image.png
Description

The depiction of female action heroes in modern blockbuster films has become more accurate throughout the years; however, the representation of women is still not as progressive as feminist scholars, actors, and viewers would like. This thesis explores two recent blockbuster films, Wonder Woman (2017) and Mad Max: Fury Road

The depiction of female action heroes in modern blockbuster films has become more accurate throughout the years; however, the representation of women is still not as progressive as feminist scholars, actors, and viewers would like. This thesis explores two recent blockbuster films, Wonder Woman (2017) and Mad Max: Fury Road (2015), and how each film deals with the representation of women. While one could look to many cultural forms to explore such issues, films, “the most accessible representations of the past, present, and future of our society,” are particularly fertile ground for exploring gendered representations and stereotyping (Haskell, 1974). For much of Hollywood history, action films have used female protagonists as either passive, venerated symbols of perfect femininity, or objects of fascination and sexual pleasure for their male viewers. Or, if the female hero does have a degree of agency that allows her to push the plot forward, she is subject to moral scrutiny and frequently masculinized. In fact, the representation of women often falls into binary categories: the angelic damsel in distress, or the morally reprehensible, often masculinized, female villain. While the history of women’s representation in film more generally and action films more specifically is a long and complicated one that is beyond the scope of this project, recent action productions have exhibited notable shifts, both in terms of female characters’ box-office and narrative strength. However, both Wonder Woman and Mad Max: Fury Road, present viewers with examples of female representation that break through many of the misogynistic tropes that have dominated the genre for far too long. The key distinction between how both films destroy gendered stereotypes lies in the degrees to which the films allow their central female protagonists, and more minor female characters, to dominate the narrative and inhabit the composition of the screen. Wonder Woman tells the story of one powerful woman, whereas Fury Road utilizes a multitude of women in its story to defy gender stereotypes. While both films can be interpreted as empowering for female viewers, Wonder Woman gives its audience an easily digestible example of female agency; this is due to Wonder Woman allowing its famous comic book hero to comment and reject traditional women’s clothing, but also insists Diana be limited to hypersexualized battle armour and implicates that women cannot have love, power, and family. On the other hand, Fury Road presents viewers with a more radicalized gynocentric world in which, after considerable struggle and not without compromise, female characters not only have power, but wrest it away from the men who have abusively held onto control in the past. These two films also paved new ground for women in Hollywood production terms: giving women more power at the box-office and destroying the old-aged notion that female-centric films do not sell and make money at the same rate as male-centered ones do. Both Wonder Woman and Mad Max: Fury Road, in their own ways, depict that there is space for female action heroes to be more progressive and feminist in future blockbuster action films.

ContributorsChemarla, Shresta R (Author) / Miller, April Dawn (Thesis director) / Ingram-Waters, Mary (Committee member) / Department of Finance (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148065-Thumbnail Image.png
Description

Self-efficacy in engineering, engineering identity, and coping in engineering have been shown in previous studies to be highly important in the advancement of one’s development in the field of engineering. Through the creation and deployment of a 17 question survey, undergraduate and first year masters students were asked to provide

Self-efficacy in engineering, engineering identity, and coping in engineering have been shown in previous studies to be highly important in the advancement of one’s development in the field of engineering. Through the creation and deployment of a 17 question survey, undergraduate and first year masters students were asked to provide information on their engagement at their university, their demographic information, and to rank their level of agreement with 22 statements relating to the aforementioned ideas. Using the results from the collected data, exploratory factor analysis was completed to identify the factors that existed and any correlations. No statistically significant correlations between the identified three factors and demographic or engagement information were found. There needs to be a significant increase in the data sample size for statistically significant results to be found. Additionally, there is future work needed in the creation of an engagement measure that successfully reflects the level and impact of participation in engineering activities beyond traditional coursework.

ContributorsJones, Elizabeth Michelle (Author) / Ganesh, Tirupalavanam (Thesis director) / Graham, Kaely (Committee member) / Electrical Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Filmmakers seek to create story pieces that are visually beautiful and engage the full attention of their audience. They typically abide by a 3-step process moving through pre-production, production, and post-production. Within each step, there are a series of tasks that need to be accomplished in order to reach the

Filmmakers seek to create story pieces that are visually beautiful and engage the full attention of their audience. They typically abide by a 3-step process moving through pre-production, production, and post-production. Within each step, there are a series of tasks that need to be accomplished in order to reach the completed film. A successful film requires careful planning and strategy in pre-production, timely and decisive execution in production, and minimal unforeseen retouching in post-production.<br/><br/>Even though filmmakers have continued to follow the same formula throughout the decades, the filmmaking process has remained largely inefficient. It is extremely common for pre-production planning to be undercut, for production filming to run far too long, and for post-production VFX and editing to send the project over budget. These instances can cause major issues as the project is being finalized. In many scenarios portions of the project need to be reshot, the box office revenue isn’t enough to make up for extensive VFX retouching, or the project may never even come to fruition. <br/><br/>The reason for this recurring theme of films being over budget and out of time is quite simply that technology has made filmmakers lazy. “Fix it in post” is a disgustingly common phrase used in the film industry. It describes the utter abuse of computer retouching in the post-production phase of filmmaking. Despite working in an industry that seeks to entertain the human eye, filmmakers have become blind to all of the small mistakes that could cost them hundreds of hours and millions of dollars in the long run.

ContributorsKlewicki, Tallee Jo (Author) / Shin, Dosun (Thesis director) / Eliciana, Nascimento (Committee member) / The Design School (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148195-Thumbnail Image.png
Description

The colossal global counterfeit market and advances in cryptography including quantum computing supremacy have led the drive for a class of anti-counterfeit tags that are physically unclonable. Dendrites, previously considered an undesirable side effect of battery operation, have promise as an extremely versatile version of such tags, with their fundamental

The colossal global counterfeit market and advances in cryptography including quantum computing supremacy have led the drive for a class of anti-counterfeit tags that are physically unclonable. Dendrites, previously considered an undesirable side effect of battery operation, have promise as an extremely versatile version of such tags, with their fundamental nature ensuring that no two dendrites are alike and that they can be read at multiple magnification scales. In this work, we first pursue a simulation for electrochemical dendrites that elucidates fundamental information about their growth mechanism. We then translate these results into physical dendrites and demonstrate methods of producing a hash from these dendrites that is damage-tolerant for real-world verification. Finally, we explore theoretical curiosities that arise from the fractal nature of dendrites. We find that uniquely ramified dendrites, which rely on lower ion mobility and conductive deposition, are particularly amenable to wavelet hashing, and demonstrate that these dendrites have strong commercial potential for securing supply chains at the highest level while maintaining a low price point.

ContributorsSneh, Tal (Author) / Kozicki, Michael (Thesis director) / Gonzalez-Velo, Yago (Committee member) / School of Molecular Sciences (Contributor) / Department of Physics (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Through this creative project, I analyzed how COVID-19 has affected the theatre industry. I created a mini-documentary following ASU’s production of Runaways, which was performed without an audience. The final product was a combination of pre-filmed and self-taped scenes. I documented how students were still able to learn and cultivate

Through this creative project, I analyzed how COVID-19 has affected the theatre industry. I created a mini-documentary following ASU’s production of Runaways, which was performed without an audience. The final product was a combination of pre-filmed and self-taped scenes. I documented how students were still able to learn and cultivate their skills during a time where most things are virtual. In addition, I analyzed how the shift to filmed theatre has changed the definition of live theatre, including increased accessibility. I also explored the importance of theatre through analyzing the themes of musical theatre performances such as Rent and Runaways. During a time where people cannot gather, artists are still finding a way to create and tell stories.

ContributorsDavis, Elizabeth Nelson (Author) / Moran, Stacey (Thesis director) / Yatso, Toby (Committee member) / Arts, Media and Engineering Sch T (Contributor) / School of Community Resources and Development (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148215-Thumbnail Image.png
Description

Time studies are an effective tool to analyze current production systems and propose improvements. The problem that motivated the project was that conducting time studies and observing the progression of components across the factory floor is a manual process. Four Industrial Engineering students worked with a manufacturing company to develo

Time studies are an effective tool to analyze current production systems and propose improvements. The problem that motivated the project was that conducting time studies and observing the progression of components across the factory floor is a manual process. Four Industrial Engineering students worked with a manufacturing company to develop Computer Vision technology that would automate the data collection process for time studies. The team worked in an Agile environment to complete over 120 classification sets, create 8 strategy documents, and utilize Root Cause Analysis techniques to audit and validate the performance of the trained Computer Vision data models. In the future, there is an opportunity to continue developing this product and expand the team’s work scope to apply more engineering skills on the data collected to drive factory improvements.

ContributorsJohnson, Katelyn Rose (Co-author) / Martz, Emma (Co-author) / Chmelnik, Nathan (Co-author) / de Guzman, Lorenzo (Co-author) / Ju, Feng (Thesis director) / Courter, Brandon (Committee member) / Industrial, Systems & Operations Engineering Prgm (Contributor, Contributor) / Industrial, Systems & Operations Engineering Prgm (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05