Matching Items (13)
Filtering by

Clear all filters

153416-Thumbnail Image.png
Description
Due to decrease in fossil fuel levels, the world is shifting focus towards renewable sources of energy. With an annual average growth rate of 25%, wind is one of the foremost source of harnessing cleaner energy for production of electricity. Wind turbines have been developed to tap power from wind.

Due to decrease in fossil fuel levels, the world is shifting focus towards renewable sources of energy. With an annual average growth rate of 25%, wind is one of the foremost source of harnessing cleaner energy for production of electricity. Wind turbines have been developed to tap power from wind. As a single wind turbine is insufficient, multiple turbines are installed forming a wind farm. Generally, wind farms can have hundreds to thousands of turbines concentrated in a small region. There have been multiple studies centering the influence of weather on such wind farms, but no substantial research focused on how wind farms effect local climate. Technological advances have allowed development of commercial wind turbines with a power output greater than 7.58 MW. This has led to a reduction in required number of turbines and has optimized land usage. Hence, current research considers higher power density compared to previous works that relied on wind farm density of 2 to 4 W/m 2 . Simulations were performed using Weather Research and Forecasting software provided by NCAR. The region of simulation is Southern Oregon, with domains including both onshore and offshore wind farms. Unlike most previous works, where wind farms were considered to be on a flat ground, effects of topography have also been considered here. Study of seasonal effects over wind farms has provided better insight into changes in local wind direction. Analysis of mean velocity difference across wind farms at a height of 10m and 150m gives an understanding of wind velocity profiles. Results presented in this research tends to contradict earlier belief that velocity reduces throughout the farm. Large scale simulations have shown that sometimes, more than 50% of the farm can have an increased wind velocity of up to 1m/s

at an altitude of 10m.
ContributorsKadiyala, Yogesh Rao (Author) / Huang, Huei-Ping (Thesis advisor) / Rajagopalan, Jagannathan (Committee member) / Calhoun, Ronald (Committee member) / Arizona State University (Publisher)
Created2015
156057-Thumbnail Image.png
Description
The stability of nanocrystalline microstructural features allows structural materials to be synthesized and tested in ways that have heretofore been pursued only on a limited basis, especially under dynamic loading combined with temperature effects. Thus, a recently developed, stable nanocrystalline alloy is analyzed here for quasi-static (<100 s-1) and dynamic

The stability of nanocrystalline microstructural features allows structural materials to be synthesized and tested in ways that have heretofore been pursued only on a limited basis, especially under dynamic loading combined with temperature effects. Thus, a recently developed, stable nanocrystalline alloy is analyzed here for quasi-static (<100 s-1) and dynamic loading (103 to 104 s-1) under uniaxial compression and tension at multiple temperatures ranging from 298-1073 K. After mechanical tests, microstructures are analyzed and possible deformation mechanisms are proposed. Following this, strain and strain rate history effects on mechanical behavior are analyzed using a combination of quasi-static and dynamic strain rate Bauschinger testing. The stable nanocrystalline material is found to exhibit limited flow stress increase with increasing strain rate as compared to that of both pure, coarse grained and nanocrystalline Cu. Further, the material microstructural features, which includes Ta nano-dispersions, is seen to pin dislocation at quasi-static strain rates, but the deformation becomes dominated by twin nucleation at high strain rates. These twins are pinned from further growth past nucleation by the Ta nano-dispersions. Testing of thermal and load history effects on the mechanical behavior reveals that when thermal energy is increased beyond 200 °C, an upturn in flow stress is present at strain rates below 104 s-1. However, in this study, this simple assumption, established 50-years ago, is shown to break-down when the average grain size and microstructural length-scale is decreased and stabilized below 100nm. This divergent strain-rate behavior is attributed to a unique microstructure that alters slip-processes and their interactions with phonons; thus enabling materials response with a constant flow-stress even at extreme conditions. Hence, the present study provides a pathway for designing and synthesizing a new-level of tough and high-energy absorbing materials.
ContributorsTurnage, Scott Andrew (Author) / Solanki, Kiran N (Thesis advisor) / Rajagopalan, Jagannathan (Committee member) / Peralta, Pedro (Committee member) / Darling, Kristopher A (Committee member) / Mignolet, Marc (Committee member) / Arizona State University (Publisher)
Created2017
156466-Thumbnail Image.png
Description
Increasing density of microelectronic packages, results in an increase in thermal and mechanical stresses within the various layers of the package. To accommodate the high-performance demands, the materials used in the electronic package would also require improvement. Specifically, the damage that often occurs in solders that function as die-attachment and

Increasing density of microelectronic packages, results in an increase in thermal and mechanical stresses within the various layers of the package. To accommodate the high-performance demands, the materials used in the electronic package would also require improvement. Specifically, the damage that often occurs in solders that function as die-attachment and thermal interfaces need to be addressed. This work evaluates and characterizes thermo-mechanical damage in two material systems – Electroplated Tin and Sintered Nano-Silver solder.

Tin plated electrical contacts are prone to formation of single crystalline tin whiskers which can cause short circuiting. A mechanistic model of their formation, evolution and microstructural influence is still not fully understood. In this work, growth of mechanically induced tin whiskers/hillocks is studied using in situ Nano-indentation and Electron Backscatter Diffraction (EBSD). Electroplated tin was indented and monitored in vacuum to study growth of hillocks without the influence of atmosphere. Thermal aging was done to study the effect of intermetallic compounds. Grain orientation of the hillocks and the plastically deformed region surrounding the indent was studied using Focused Ion Beam (FIB) lift-out technique. In addition, micropillars were milled on the surface of electroplated Sn using FIB to evaluate the yield strength and its relation to Sn grain size.

High operating temperature power electronics use wide band-gap semiconductor devices (Silicon Carbide/Gallium Nitride). The operating temperature of these devices can exceed 250oC, preventing use of traditional Sn-solders as Thermal Interface materials (TIM). At high temperature, the thermomechanical stresses can severely degrade the reliability and life of the device. In this light, new non-destructive approach is needed to understand the damage mechanism when subjected to reliability tests such as thermal cycling. In this work, sintered nano-Silver was identified as a promising high temperature TIM. Sintered nano-Silver samples were fabricated and their shear strength was evaluated. Thermal cycling tests were conducted and damage evolution was characterized using a lab scale 3D X-ray system to periodically assess changes in the microstructure such as cracks, voids, and porosity in the TIM layer. The evolution of microstructure and the effect of cycling temperature during thermal cycling are discussed.
ContributorsLujan Regalado, Irene (Author) / Chawla, Nikhilesh (Thesis advisor) / Frear, Darrel (Committee member) / Rajagopalan, Jagannathan (Committee member) / Jiao, Yang (Committee member) / Arizona State University (Publisher)
Created2018
133513-Thumbnail Image.png
Description
The goal of our research was to develop and validate a method for predicting the mechanical behavior of Additively Manufactured multi-material honeycomb structures. Multiple approaches already exist in the field for modeling the behavior of cellular materials, including the bulk property assumption, homogenization and strut level characterization [1]. With the

The goal of our research was to develop and validate a method for predicting the mechanical behavior of Additively Manufactured multi-material honeycomb structures. Multiple approaches already exist in the field for modeling the behavior of cellular materials, including the bulk property assumption, homogenization and strut level characterization [1]. With the bulk property approach, the structure is assumed to behave according to what is known about the material in its bulk formulation, without regard to its geometry or scale. With the homogenization technique, the specimen that is being tested is treated as a solid material within the simulation environment even if the physical specimen is not. Then, reduced mechanical properties are assigned to the specimen to account for any voids that exist within the physical specimen. This approach to mechanical behavior prediction in cellular materials is shape dependent. In other words, the same model cannot be used from one specimen to the next if the cell shapes of those lattices differ in any way. When using the strut level characterization approach, a single strut (the connecting member between nodes constituting a cellular material) is isolated and tested. With this approach, there tends to be a significant deviation in the experimental data due to the small size of the isolated struts. Yet it has the advantage of not being shape sensitive, at least in principle. The method that we developed, and chose to test lies within the latter category, and is what we have coined as the Representative Lattice Element (RLE) Method. This method is modeled after the well-established Representative Volume Element (RVE) method [2]. We define the RLE as the smallest unit over which mechanical tests can be conducted that will provide results which are representative of the larger lattice structure. In other words, the theory is that a single member (or beam in this case) of a honeycomb structure can be taken, tests can be conducted on this member to determine the mechanical properties of the representative lattice element and the results will be representative of the mechanical behavior whole structure. To investigate this theory, we designed specimens, conducted various tensile and compression tests, analyzed the recorded data, conducted a micromechanics study, and performed structural simulation work using commercial Finite Element Analysis software.
ContributorsSalti, Ziyad Zuheir (Co-author) / Eppley, Trevor (Co-author) / Bhate, Dhruv (Thesis director) / Song, Kenan (Committee member) / Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
155407-Thumbnail Image.png
Description
This study uses Computational Fluid Dynamics (CFD) modeling to analyze the

dependence of wind power potential and turbulence intensity on aerodynamic design of a

special type of building with a nuzzle-like gap at its rooftop. Numerical simulations using

ANSYS Fluent are carried out to quantify the above-mentioned dependency due to three

major geometric parameters

This study uses Computational Fluid Dynamics (CFD) modeling to analyze the

dependence of wind power potential and turbulence intensity on aerodynamic design of a

special type of building with a nuzzle-like gap at its rooftop. Numerical simulations using

ANSYS Fluent are carried out to quantify the above-mentioned dependency due to three

major geometric parameters of the building: (i) the height of the building, (ii) the depth of

the roof-top gap, and (iii) the width of the roof-top gap. The height of the building is varied

from 8 m to 24 m. Likewise, the gap depth is varied from 3 m to 5 m and the gap width

from 2 m to 4 m. The aim of this entire research is to relate these geometric parameters of

the building to the maximum value and the spatial pattern of wind power potential across

the roof-top gap. These outcomes help guide the design of the roof-top geometry for wind

power applications and determine the ideal position for mounting a micro wind turbine.

From these outcomes, it is suggested that the wind power potential is greatly affected by

the increasing gap width or gap depth. It, however, remains insensitive to the increasing

building height, unlike turbulence intensity which increases with increasing building

height. After performing a set of simulations with varying building geometry to quantify

the wind power potential before the installation of a turbine, another set of simulations is

conducted by installing a static turbine within the roof-top gap. The results from the latter

are used to further adjust the estimate of wind power potential. Recommendations are made

for future applications based on the findings from the numerical simulations.
ContributorsKailkhura, Gargi (Author) / Huang, Huei-Ping (Thesis advisor) / Rajagopalan, Jagannathan (Committee member) / Forzani, Erica (Committee member) / Arizona State University (Publisher)
Created2017
155431-Thumbnail Image.png
Description
The Very High Temperature Reactor (VHTR) is one of six conceptual designs proposed for Generation IV nuclear reactors. Alloy 617, a solid solution strengthened Ni-base superalloy, is currently the primary candidate material for the tubing of the Intermediate Heat Exchanger (IHX) in the VHTR design. Steady-state operation of the nuclear

The Very High Temperature Reactor (VHTR) is one of six conceptual designs proposed for Generation IV nuclear reactors. Alloy 617, a solid solution strengthened Ni-base superalloy, is currently the primary candidate material for the tubing of the Intermediate Heat Exchanger (IHX) in the VHTR design. Steady-state operation of the nuclear power plant at elevated temperatures leads to creep deformation, whereas loading transients including startup and shutdown generate fatigue. A detailed understanding of the creep-fatigue interaction in Alloy 617 is necessary before it can be considered as a material for nuclear construction in ASME Boiler and Pressure Vessel Code. Current design codes for components undergoing creep-fatigue interaction at elevated temperatures require creep-fatigue testing data covering the entire range from fatigue-dominant to creep-dominant loading. Classical strain-controlled tests, which produce stress relaxation during the hold period, show a saturation in cycle life with increasing hold periods due to the rapid stress-relaxation of Alloy 617 at high temperatures. Therefore, applying longer hold time in these tests cannot generate creep-dominated failure. In this study, uniaxial isothermal creep-fatigue tests with non-traditional loading waveforms were designed and performed at 850 and 950°C, with an objective of generating test data in the creep-dominant regime. The new loading waveforms are hybrid strain-controlled and force-controlled testing which avoid stress relaxation during the creep hold. The experimental data showed varying proportions of creep and fatigue damage, and provided evidence for the inadequacy of the widely-used time fraction rule for estimating creep damage under creep-fatigue conditions. Micro-scale damage features in failed test specimens, such as fatigue cracks and creep voids, were quantified using a Scanning Electron Microscope (SEM) to find a correlation between creep and fatigue damage. Quantitative statistical imaging analysis showed that the microstructural damage features (cracks and voids) are correlated with a new mechanical driving force parameter. The results from this image-based damage analysis were used to develop a phenomenological life-prediction methodology called the effective time fraction approach. Finally, the constitutive creep-fatigue response of the material at 950°C was modeled using a unified viscoplastic model coupled with a damage accumulation model. The simulation results were used to validate an energy-based constitutive life-prediction model, as a mechanistic model for potential component and structure level creep-fatigue analysis.
ContributorsTahir, Fraaz (Author) / Liu, Yongming (Thesis advisor) / Jiang, Hanqing (Committee member) / Rajagopalan, Jagannathan (Committee member) / Oswald, Jay (Committee member) / Jiao, Yang (Committee member) / Arizona State University (Publisher)
Created2017
Description
Nanocrystalline (nc) thin films exhibit a wide range of enhanced mechanical properties compared to their coarse-grained counterparts. Furthermore, the mechanical behavior and microstructure of nc films is intimately related. Thus, precise control of the size, aspect ratio and spatial distribution of grains can enable the synthesis of thin films

Nanocrystalline (nc) thin films exhibit a wide range of enhanced mechanical properties compared to their coarse-grained counterparts. Furthermore, the mechanical behavior and microstructure of nc films is intimately related. Thus, precise control of the size, aspect ratio and spatial distribution of grains can enable the synthesis of thin films with exceptional mechanical properties. However, conventional bottom-up techniques for synthesizing thin films are incapable of achieving the microstructural control required to explicitly tune their properties. This dissertation focuses on developing a novel technique to synthesize metallic alloy thin films with precisely controlled microstructures and subsequently characterizing their mechanical properties using in situ transmission electron microscopy (TEM). Control over the grain size and distribution was achieved by controlling the recrystallization process of amorphous films by the use of thin crystalline seed layers. The novel technique was used to manipulate the microstructure of structural (TiAl) and functional (NiTi) thin films thereby exhibiting its capability and versatility. Following the synthesis of thin films with tailored microstructures, in situ TEM techniques were employed to probe their mechanical properties. Firstly, a novel technique was developed to measure local atomic level elastic strains in metallic glass thin films during in situ TEM straining. This technique was used to detect structural changes and anelastic deformation in metallic glass thin films. Finally, as the electron beam (e-beam) in TEMs is known to cause radiation damage to specimen, systematic experiments were carried out to quantify the effect of the e-beam on the stress-strain response of nc metals. Experiments conducted on Al and Au films revealed that the e-beam enhances dislocation activity leading to stress relaxation.
ContributorsSarkar, Rohit (Author) / Rajagopalan, Jagannathan (Thesis advisor) / Peralta, Pedro (Committee member) / Sieradzki, Karl (Committee member) / Crozier, Peter (Committee member) / Arizona State University (Publisher)
Created2017
187523-Thumbnail Image.png
Description
The design of energy absorbing structures is driven by application specific requirements like the amount of energy to be absorbed, maximum transmitted stress that is permissible, stroke length, and available enclosing space. Cellular structures like foams are commonly leveraged in nature for energy absorption and have also found use in

The design of energy absorbing structures is driven by application specific requirements like the amount of energy to be absorbed, maximum transmitted stress that is permissible, stroke length, and available enclosing space. Cellular structures like foams are commonly leveraged in nature for energy absorption and have also found use in engineering applications. With the possibility of manufacturing complex cellular shapes using additive manufacturing technologies, there is an opportunity to explore new topologies that improve energy absorption performance. This thesis aims to systematically understand the relationships between four key elements: (i) unit cell topology, (ii) material composition, (iii) relative density, and (iv) fields; and energy absorption behavior, and then leverage this understanding to develop, implement and validate a methodology to design the ideal cellular structure energy absorber. After a review of the literature in the domain of additively manufactured cellular materials for energy absorption, results from quasi-static compression of six cellular structures (hexagonal honeycomb, auxetic and Voronoi lattice, and diamond, Gyroid, and Schwarz-P) manufactured out of AlSi10Mg and Nylon-12. These cellular structures were compared to each other in the context of four design-relevant metrics to understand the influence of cell design on the deformation and failure behavior. Three new and revised metrics for energy absorption were proposed to enable more meaningful comparisons and subsequent design selection. Triply Periodic Minimal Surface (TPMS) structures were found to have the most promising overall performance and formed the basis for the numerical investigation of the effect of fields on the energy absorption performance of TPMS structures. A continuum shell-based methodology was developed to analyze the large deformation behavior of field-driven variable thickness TPMS structures and validated against experimental data. A range of analytical and stochastic fields were then evaluated that modified the TPMS structure, some of which were found to be effective in enhancing energy absorption behavior in the structures while retaining the same relative density. Combining findings from studies on the role of cell geometry, composition, relative density, and fields, this thesis concludes with the development of a design framework that can enable the formulation of cellular material energy absorbers with idealized behavior.
ContributorsShinde, Mandar (Author) / Bhate, Dhruv (Thesis advisor) / Peralta, Pedro (Committee member) / Liu, Yongming (Committee member) / Jiao, Yang (Committee member) / Kwon, Beomjin (Committee member) / Arizona State University (Publisher)
Created2023
171542-Thumbnail Image.png
Description
Achieving a viable process for advanced manufacturing of ceramics and metal-ceramic composites is a sought-after goal in a wide range of fields including electronics and sensors for harsh environments, microelectromechanical devices, energy storage materials, and structural materials, among others. In this dissertation, the processing, and manufacturing of ceramics and ceramic

Achieving a viable process for advanced manufacturing of ceramics and metal-ceramic composites is a sought-after goal in a wide range of fields including electronics and sensors for harsh environments, microelectromechanical devices, energy storage materials, and structural materials, among others. In this dissertation, the processing, and manufacturing of ceramics and ceramic composites are addressed, specifically, a process for three-dimensional (3D) printing of polymer-derived ceramics (PDC), and a process for low-cost manufacturing as well as healing of metal-ceramic composites is demonstrated.Three-dimensional printing of ceramics is enabled by dispensing the preceramic polymer at the tip of a moving nozzle into a gel that can reversibly switch between fluid and solid states, and subsequently thermally cross-linking the entire printed part “at once” while still inside the same gel was demonstrated. The solid gel converts to fluid at the tip of the moving nozzle, allowing the polymer solution to be dispensed and quickly returns to a solid state to maintain the geometry of the printed polymer both during printing and the subsequent high-temperature (160 °C) cross-linking. After retrieving the cross-linked part from the gel, the green body is converted to ceramic by high-temperature pyrolysis. This scalable process opens new opportunities for low-cost and high-speed production of complex three-dimensional ceramic parts and will be widely used for high-temperature and corrosive environment applications, including electronics and sensors, microelectromechanical systems, energy, and structural applications. Metal-ceramic composites are technologically significant as structural and functional materials and are among the most expensive materials to manufacture and repair. Hence, technologies for self-healing metal-ceramic composites are important. Here, a concept to fabricate and heal co-continuous metal-ceramic composites at room temperature were demonstrated. The composites were fabricated by infiltration of metal (here Copper) into a porous alumina preform (fabricated by freeze-casting) through electroplating; a low-temperature and low-cost process for the fabrication of such composites. Additionally, the same electroplating process was demonstrated for healing damages such as grooves and cracks in the original composite, such that the healed composite recovered its strength by more than 80%. Such technology may be expanded toward fully autonomous self-healing structures.
ContributorsMahmoudi, Mohammadreza (Author) / Minary-Jolandan, Majid (Thesis advisor) / Rajagopalan, Jagannathan (Committee member) / Cramer, Corson (Committee member) / Kang, Wonmo (Committee member) / Bhate, Dhruv (Committee member) / Arizona State University (Publisher)
Created2022
158762-Thumbnail Image.png
Description
Traditionally nanoporous gold is created by selective dissolution of silver or copper from a binary silver-gold or copper-gold alloy. These alloys serve as prototypical model systems for a phenomenon referred to as stress-corrosion cracking. Stress-corrosion cracking is the brittle failure of a normally ductile material occurring in a

Traditionally nanoporous gold is created by selective dissolution of silver or copper from a binary silver-gold or copper-gold alloy. These alloys serve as prototypical model systems for a phenomenon referred to as stress-corrosion cracking. Stress-corrosion cracking is the brittle failure of a normally ductile material occurring in a corrosive environment under a tensile stress. Silver-gold can experience this type of brittle fracture for a range of compositions. The corrosion process in this alloy results in a bicontinuous nanoscale morphology composed of gold-rich ligaments and voids often referred to as nanoporous gold. Experiments have shown that monolithic nanoporous gold can sustain high speed cracks which can then be injected into parent-phase alloy. This work compares nanoporous gold created from ordered and disordered copper-gold using digital image analysis and electron backscatter diffraction. Nanoporous gold from both disordered copper-gold and silver-gold, and ordered copper-gold show that grain orientation and shape remain largely unchanged by the dealloying process. Comparing the morphology of the nanoporous gold from ordered and disordered copper-gold with digital image analysis, minimal differences are found between the two and it is concluded that they are not statistically significant. This reveals the robust nature of nanoporous gold morphology against small variations in surface diffusion and parent-phase crystal structure.
Then the corrosion penetration down the grain boundary is compared to the depth of crack injections in polycrystal silver-gold. Based on statistical comparison, the crack-injections penetrate into the parent-phase grain boundary beyond the corrosion-induced porosity. To compare crack injections to stress-corrosion cracking, single crystal silver-gold samples are employed. Due to the cleavage-like nature of the fracture surfaces, electron backscatter diffraction is possible and employed to compare the crystallography of stress-corrosion crack surfaces and crack-injection surfaces. From the crystallographic similarities of these fracture surfaces, it is concluded that stress-corrosion can occur via a series of crack-injection events. This relationship between crack injections and stress corrosion cracking is further examined using electrochemical data from polycrystal silver-gold samples during stress-corrosion cracking. The results support the idea that crack injection is a mechanism for stress-corrosion cracking.
ContributorsKarasz, Erin (Author) / Sieradzki, Karl (Thesis advisor) / Chawla, Nikhilesh (Committee member) / Peralta, Pedro (Committee member) / Rajagopalan, Jagannathan (Committee member) / Arizona State University (Publisher)
Created2020