Matching Items (2)
Filtering by

Clear all filters

162272-Thumbnail Image.png
Description

The pandemic that hit in 2020 has boosted the growth of online learning that involves the booming of Massive Open Online Course (MOOC). To support this situation, it will be helpful to have tools that can help students in choosing between the different courses and can help instructors to understand

The pandemic that hit in 2020 has boosted the growth of online learning that involves the booming of Massive Open Online Course (MOOC). To support this situation, it will be helpful to have tools that can help students in choosing between the different courses and can help instructors to understand what the students need. One of those tools is an online course ratings predictor. Using the predictor, online course instructors can learn the qualities that majority course takers deem as important, and thus they can adjust their lesson plans to fit those qualities. Meanwhile, students will be able to use it to help them in choosing the course to take by comparing the ratings. This research aims to find the best way to predict the rating of online courses using machine learning (ML). To create the ML model, different combinations of the length of the course, the number of materials it contains, the price of the course, the number of students taking the course, the course’s difficulty level, the usage of jargons or technical terms in the course description, the course’s instructors’ rating, the number of reviews the instructors got, and the number of classes the instructors have created on the same platform are used as the inputs. Meanwhile, the output of the model would be the average rating of a course. Data from 350 courses are used for this model, where 280 of them are used for training, 35 for testing, and the last 35 for validation. After trying out different machine learning models, wide neural networks model constantly gives the best training results while the medium tree model gives the best testing results. However, further research needs to be conducted as none of the results are not accurate, with 0.51 R-squared test result for the tree model.

ContributorsWidodo, Herlina (Author) / VanLehn, Kurt (Thesis director) / Craig, Scotty (Committee member) / Barrett, The Honors College (Contributor) / Department of Management and Entrepreneurship (Contributor) / Computer Science and Engineering Program (Contributor)
Created2021-12
131373-Thumbnail Image.png
Description
The relationship between video games and education is something that has been studied extensively in academia. Based upon these studies a new concept was created, gamification. Gamification is the next step in video game research to analyze why video games enhance learning. The interest and research into this concept have

The relationship between video games and education is something that has been studied extensively in academia. Based upon these studies a new concept was created, gamification. Gamification is the next step in video game research to analyze why video games enhance learning. The interest and research into this concept have developed so much so that it has become its own topic area for research. This study is looking to analyze the effect that gamification has on not only learning, but also self-efficacy. Through a choose your own adventure game, the knowledge and self-efficacy of participants will be examined to observe the differences when learning difficult engineering concepts with and without gamification. It is expected that participants that experienced training through gamification will demonstrate deeper learning and higher self-efficacy than trained through a video. Furthermore, it is anticipated that some video trained participants’ self-efficacy will increase; however, their comprehension will be less than participants trained through gamification. The results of this study can help promote the interest in researching gamification and education, while influencing educators to corporate gamification elements when designing their courses. Moreover, this study continued through adaptation and integration into a statics forces class, investigated if the same results can be found within a classroom setting.
ContributorsKanechika, Amber (Author) / Craig, Scotty (Thesis director) / Roscoe, Rod (Committee member) / Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05