Matching Items (16)
Filtering by

Clear all filters

148195-Thumbnail Image.png
Description

The colossal global counterfeit market and advances in cryptography including quantum computing supremacy have led the drive for a class of anti-counterfeit tags that are physically unclonable. Dendrites, previously considered an undesirable side effect of battery operation, have promise as an extremely versatile version of such tags, with their fundamental

The colossal global counterfeit market and advances in cryptography including quantum computing supremacy have led the drive for a class of anti-counterfeit tags that are physically unclonable. Dendrites, previously considered an undesirable side effect of battery operation, have promise as an extremely versatile version of such tags, with their fundamental nature ensuring that no two dendrites are alike and that they can be read at multiple magnification scales. In this work, we first pursue a simulation for electrochemical dendrites that elucidates fundamental information about their growth mechanism. We then translate these results into physical dendrites and demonstrate methods of producing a hash from these dendrites that is damage-tolerant for real-world verification. Finally, we explore theoretical curiosities that arise from the fractal nature of dendrites. We find that uniquely ramified dendrites, which rely on lower ion mobility and conductive deposition, are particularly amenable to wavelet hashing, and demonstrate that these dendrites have strong commercial potential for securing supply chains at the highest level while maintaining a low price point.

ContributorsSneh, Tal (Author) / Kozicki, Michael (Thesis director) / Gonzalez-Velo, Yago (Committee member) / School of Molecular Sciences (Contributor) / Department of Physics (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
135797-Thumbnail Image.png
DescriptionThis creative project provides documentation and an exploration of my interactions with individuals encountered while hitchhiking up the west coast.
ContributorsGerber, Evan Howard (Author) / Kashiwagi, Dean (Thesis director) / Kashiwagi, Jacob (Committee member) / W. P. Carey School of Business (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
Description
The goal of this paper is to describe the current understanding of how a human’s remaining senses are affected by the onset of blindness through physiological adaptations. The main focuses of this paper stem around the brain and how it adapts to blindness through mechanisms such as neuroplasticity. This paper

The goal of this paper is to describe the current understanding of how a human’s remaining senses are affected by the onset of blindness through physiological adaptations. The main focuses of this paper stem around the brain and how it adapts to blindness through mechanisms such as neuroplasticity. This paper will explore the increased acuity of both tactile and auditory processing as well as spatial navigation resulting from the onset of blindness. This paper will also explore the enhanced ability of the blind to echolocate as well as the mechanisms of homeostasis that underlie this ability. Finally, this paper will report on the lack of enhancement for the senses of taste and smell in humans after the onset of blindness and possible reasons why there are no observed increases in potential. It is the hope of the writers that this paper will cover the current state of knowledge on the phenomenon of adaptations resulting from the onset of blindness to such an extent that this information can be presented in a podcast format later on.

Disclaimer: Due to the COVID-19 global pandemic, the final outcomes of this project were impacted and limited. Therefore, the rough draft practice podcast session has been uploaded to accompany the written thesis portion as final recordings could not be recorded at this time.
ContributorsMoyzes, Hannah (Co-author) / Fox, Dylan (Co-author) / Hyatt, JP (Thesis director) / Kingsbury, Jeffrey (Committee member) / College of Health Solutions (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
Description
The purpose of this project was to discuss the physiological effects of isolation on the human body and how the body adapts. Through reviewing stories and studies of social and perceptual isolation, the adaptations of the human mind are detailed. This project explores the experiences of prisoners, sensory deprivation tanks,

The purpose of this project was to discuss the physiological effects of isolation on the human body and how the body adapts. Through reviewing stories and studies of social and perceptual isolation, the adaptations of the human mind are detailed. This project explores the experiences of prisoners, sensory deprivation tanks, cave explorations, as well as studies involving monkeys and carpenter ants. The adaptations witnessed include hallucinations, increased mortality, anxiety, agitation, altered sense of time, delayed response, and lowered blood pressure. Knowing the factors surrounding the isolation experience is crucial to understand the presenting adaptation methods. These factors include duration, voluntary or involuntary participation, mental strength, and the restriction level of the isolation.

DISCLAIMER: Due to the unexpected COVID-19 pandemic, the attached podcast is a draft recording in lieu of the final recording
ContributorsSidhu, Nimrit (Co-author) / Deacon, Hannah (Co-author) / Hyatt, JP (Thesis director) / Kingsbury, Jeffrey (Committee member) / School of Social Work (Contributor) / College of Health Solutions (Contributor) / Arizona State University. College of Nursing & Healthcare Innovation (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
Description
Throughout history humans have had to adapt to changing conditions in order to survive. Food shortages are one of the major pressures that have shaped past populations. Because of this, the human body has many physiological adaptations that allow it to go extended periods of time consuming little to

Throughout history humans have had to adapt to changing conditions in order to survive. Food shortages are one of the major pressures that have shaped past populations. Because of this, the human body has many physiological adaptations that allow it to go extended periods of time consuming little to no food. These adaptations also allow the body to recover quickly once food becomes available. They include changes in metabolism that allow different fuel sources to be used for energy, the storing of excess energy absorbed from food in the forms of glycogen and fat to be used in between meals, and a reduction in the basal metabolic rate in response to starvation, as well as physiological changes in the small intestines. Even in places where starvation is not a concern today, these adaptations are still important as they also have an effect on weight gain and dieting in addition to promoting survival when the body is in a starved state.

Disclaimer: The initial goal of this project was to present this information as a podcast episode as a part of a series aimed at teaching the general public about human physiological adaptations. Due to the circumstances with COVID-19 we were unable to meet to make a final recording of the podcast episode. A recording of a practice session recorded earlier in the year has been uploaded instead and is therefore only a rough draft.
ContributorsPhlipot, Stephanie Anne (Author) / Hyatt, JP (Thesis director) / Kingsbury, Jeffrey (Committee member) / School of Molecular Sciences (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
Description
The Scientist in Me is an original children’s book, authored by Annmarie Barton and illustrated by Alison Lane, that explores the lives and specialties of five remarkable scientists from historically underrepresented backgrounds: Mary Anning, James Pollack, Temple Grandin, Percy Lavon Julian, and Ayah Bdeir. In the book, each scientist has

The Scientist in Me is an original children’s book, authored by Annmarie Barton and illustrated by Alison Lane, that explores the lives and specialties of five remarkable scientists from historically underrepresented backgrounds: Mary Anning, James Pollack, Temple Grandin, Percy Lavon Julian, and Ayah Bdeir. In the book, each scientist has an “Experiment” section that is meant to encourage children to immerse themselves in activities relating to the scientists’ areas of study. We believe that diversity in science is crucial for advancement, and therefore hope to inspire the next generation of scientists through immersion and representation.
ContributorsLane, Alison (Co-author) / Barton, Annmarie (Co-author) / Klemaszewski, James (Thesis director) / Fette, Donald (Committee member) / School of Molecular Sciences (Contributor) / School of Art (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
132053-Thumbnail Image.png
Description
University College Groningen, in the Netherlands, is one of two Barrett Exchange programs. These programs allow for Barrett students to receive honors credit for their classes while studying abroad. While these programs are intriguing, there are no resources on the Barrett website that provide student accounts of the experiences. For

University College Groningen, in the Netherlands, is one of two Barrett Exchange programs. These programs allow for Barrett students to receive honors credit for their classes while studying abroad. While these programs are intriguing, there are no resources on the Barrett website that provide student accounts of the experiences. For the UCG exchange, there was only a link to the UCG website which was not extremely helpful for getting an understanding of what you will truly be getting yourself into while abroad. The solution that was decided upon was to create a vlog website for Barrett students to use as a resource when looking into the program. The site contains both person experiences from students, as well has helpful tips and tricks of how to maneuver your stay in the Netherlands. Overall, there were 8 videos created and 9 posts that can be used as resources for future Barrett students. The ‘Who are We?’, ‘Why a Barrett Exchange?’, ‘First Impressions and Adjusting to the Dutch Lifestyle’, and ‘Welcome Weeks’ posts contain testimony from two other Barrett students and myself who went on the exchange during the Fall, 2018 semester. The ‘Vistmarkt’ and ‘UCG Tour’ posts contain videos that show students places they will be able to venture to in the Netherlands. The ‘Travels Tips’ and ‘UCG Curriculum’ posts contain videos that have numerous tips for students who choose this exchange as their study abroad program they wish to participate in. The final post is called ‘Next Steps’ and it is meant for future students who wish to update and extend the knowledge that is presents on the website so that students can get the most up-to-date information. This website was created to give Barrett students a better understanding of the life-changing experience they are about to embark on.
ContributorsBarda, Taylor (Author) / Scott Lynch, Jacquelyn (Thesis director) / Chiu, Roland (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-12
132606-Thumbnail Image.png
Description
Piloerection (known as goosebumps) is mediated by activation of alpha-adrenergic receptors within the sympathetic branch of the autonomic nervous system. The study of piloerection is important in multiple fields, from emotion studies to nervous system pathology. This makes piloerection particularly relevant to emotions research. Despite wide-ranging applications, current methods for

Piloerection (known as goosebumps) is mediated by activation of alpha-adrenergic receptors within the sympathetic branch of the autonomic nervous system. The study of piloerection is important in multiple fields, from emotion studies to nervous system pathology. This makes piloerection particularly relevant to emotions research. Despite wide-ranging applications, current methods for measuring piloerection are laborious and qualitative. The goal of this study is to build a wearable piloerection sensor through the use of straight-line lasers and photoresistors. The study analyzed methods of detecting and measuring goosebumps, and applied the method of laser scattering as a detection method. This device was designed and tested against a population of seven Arizona State University students. Goosebumps were elicited through conditions of cold, and video clips meant to elicit emotions of awe and sadness. Piloerection was then quantified through two controls of self-identification and camera recording, as well as the new detection method. These were then compared together, and it was found that subjective methods of determining goosebumps did not correlate well with objective measurements, but that the two objective measurements correlated well with one another. This shows that the technique of laser scattering can be used to detect goosebumps and further developments on this new detection method will be made. Moreover, the presence of uncorrelated subjective measurements further shows the need for an objective measurement of piloerection, while also bringing into question other factors that may be confused with the feeling of piloerection, such as chills or shivers. This study further reaffirmed previous studies showing a positive correlation between intense emotions.
ContributorsHemesath, Angela (Author) / Muthuswamy, Jitendran (Thesis director) / Shiota, Michelle (Lani) (Committee member) / Harrington Bioengineering Program (Contributor, Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
Description
The tarot is a means of communication with the world. It allows readers to interpret signs from their surroundings, gather information, and use this information to make inferences about a posed question. Its origins can be found in mid-15th century Europe as playing cards with four suits commonly used for

The tarot is a means of communication with the world. It allows readers to interpret signs from their surroundings, gather information, and use this information to make inferences about a posed question. Its origins can be found in mid-15th century Europe as playing cards with four suits commonly used for gambling. Several hundred years later during the 18th century, it began to be used as a tool for divination; the Major Arcana, a set of 22 trump cards representing various archetypes, evolved as a supplement to a new tarot that has become associated with mysticism. The tarot’s foundation is based on archetypes that build society. It can serve as a visual lens to understand the experiences, thoughts, and actions of a person posing a question, allowing the reader to offer a solution by understanding and interpreting the specific visual language of a deck.
Hinduism is one of the oldest religions in the world and one of the most practiced today. It is full of fantastical myths and heroic legends, as well as undercurrents of feminism contrasted with misogyny and patriarchy. Hindu myths are contradictory as stories have evolved over time and have been retold with millions of differing perspectives.
In my thesis, I portrayed the 22 archetypes of the Major Arcana of the tarot through the lens of Hindu mythology as well as the broader pan-Indian culture. I include ancient stories and references to modern social issues. I visually communicated the connections between characters of Hindu mythology and the archetypes of the tarot with 22 watercolor paintings. This project was an opportunity to explore both the tarot through Hinduism, vice-versa. It allowed for the development of a deeper connection with spirituality and religion, along with a greater understanding of visual communication.
ContributorsHarve, Prathima (Author) / Jenik, Adriene (Thesis director) / Codell, Julie (Committee member) / Zirbel, Lisa (Committee member) / School of Molecular Sciences (Contributor) / School of Art (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132849-Thumbnail Image.png
Description
Within our current educational infrastructure, there’s a lack of substantial preventive care knowledge present among elementary schoolchildren. With education cuts occurring statewide, many schools are left impoverished and schools are incapable of implementing various programs to benefit their local communities. This endeavor aims to visit public and charter elementary schools

Within our current educational infrastructure, there’s a lack of substantial preventive care knowledge present among elementary schoolchildren. With education cuts occurring statewide, many schools are left impoverished and schools are incapable of implementing various programs to benefit their local communities. This endeavor aims to visit public and charter elementary schools in the Phoenix Valley to educate youth regarding easily avoidable health risks by implementing healthy eating habits and exercise. Project BandAid will immerse students ages 7-9 in hands-on activities to enhance their knowledge on hygiene, healthy eating habits, and safety. This project incorporated funding from the Woodside Community Action Grant and Barrett, the Honors College as well as the help from Alpha Epsilon Delta (AED) volunteers.
ContributorsCovarrubias, Sidney Alicia (Co-author) / Kothari, Karishma (Co-author) / John, Benson (Co-author) / Fette, Donald (Thesis director) / Holechek, Susan (Committee member) / Sanford School of Social and Family Dynamics (Contributor) / School of Molecular Sciences (Contributor) / School for the Future of Innovation in Society (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05