Matching Items (47)
Filtering by

Clear all filters

150400-Thumbnail Image.png
Description
Semiconductor nanowires are featured by their unique one-dimensional structure which makes them promising for small scale electronic and photonic device applications. Among them, III-V material nanowires are particularly outstanding due to their good electronic properties. In bulk, these materials reveal electron mobility much higher than conventional silicon based devices, for

Semiconductor nanowires are featured by their unique one-dimensional structure which makes them promising for small scale electronic and photonic device applications. Among them, III-V material nanowires are particularly outstanding due to their good electronic properties. In bulk, these materials reveal electron mobility much higher than conventional silicon based devices, for example at room temperature, InAs field effect transistor (FET) has electron mobility of 40,000 cm2/Vs more than 10 times of Si FET. This makes such materials promising for high speed nanowire FETs. With small bandgap, such as 0.354 eV for InAs and 1.52 eV for GaAs, it does not need high voltage to turn on such devices which leads to low power consumption devices. Another feature of direct bandgap allows their applications of optoelectronic devices such as avalanche photodiodes. However, there are challenges to face up. Due to their large surface to volume ratio, nanowire devices typically are strongly affected by the surface states. Although nanowires can be grown into single crystal structure, people observe crystal defects along the wires which can significantly affect the performance of devices. In this work, FETs made of two types of III-V nanowire, GaAs and InAs, are demonstrated. These nanowires are grown by catalyst-free MOCVD growth method. Vertically nanowires are transferred onto patterned substrates for coordinate calibration. Then electrodes are defined by e-beam lithography followed by deposition of contact metals. Prior to metal deposition, however, the substrates are dipped in ammonium hydroxide solution to remove native oxide layer formed on nanowire surface. Current vs. source-drain voltage with different gate bias are measured at room temperature. GaAs nanowire FETs show photo response while InAs nanowire FETs do not show that. Surface passivation is performed on GaAs FETs by using ammonium surfide solution. The best results on current increase is observed with around 20-30 minutes chemical treatment time. Gate response measurements are performed at room temperature, from which field effect mobility as high as 1490 cm2/Vs is extracted for InAs FETs. One major contributor for this is stacking faults defect existing along nanowires. For InAs FETs, thermal excitations observed from temperature dependent results which leads us to investigate potential barriers.
ContributorsLiang, Hanshuang (Author) / Yu, Hongbin (Thesis advisor) / Ferry, David (Committee member) / Tracy, Clarence (Committee member) / Arizona State University (Publisher)
Created2011
148121-Thumbnail Image.png
Description

This thesis proposes hardware and software security enhancements to the robotic explorer of a capstone team, in collaboration with the NASA Psyche Mission Student Collaborations program. The NASA Psyche Mission, launching in 2022 and reaching the metallic asteroid of the same name in 2026, will explore from orbit what is

This thesis proposes hardware and software security enhancements to the robotic explorer of a capstone team, in collaboration with the NASA Psyche Mission Student Collaborations program. The NASA Psyche Mission, launching in 2022 and reaching the metallic asteroid of the same name in 2026, will explore from orbit what is hypothesized to be remnant core material of an early planet, potentially providing key insights to planet formation. Following this initial mission, it is possible there would be scientists and engineers interested in proposing a mission to land an explorer on the surface of Psyche to further document various properties of the asteroid. As a proposal for a second mission, an interdisciplinary engineering and science capstone team at Arizona State University designed and constructed a robotic explorer for the hypothesized surfaces of Psyche, capable of semi-autonomously navigating simulated surfaces to collect scientific data from onboard sensors. A critical component of this explorer is the command and data handling subsystem, and as such, the security of this system, though outside the scope of the capstone project, remains a crucial consideration. This thesis proposes the pairing of Trusted Platform Module (TPM) technology for increased hardware security and the implementation of SELinux (Security Enhanced Linux) for increased software security for Earth-based testing as well as space-ready missions.

ContributorsAnderson, Kelly Joanne (Author) / Bowman, Catherine (Thesis director) / Kozicki, Michael (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147972-Thumbnail Image.png
Description

Lossy compression is a form of compression that slightly degrades a signal in ways that are ideally not detectable to the human ear. This is opposite to lossless compression, in which the sample is not degraded at all. While lossless compression may seem like the best option, lossy compression, which

Lossy compression is a form of compression that slightly degrades a signal in ways that are ideally not detectable to the human ear. This is opposite to lossless compression, in which the sample is not degraded at all. While lossless compression may seem like the best option, lossy compression, which is used in most audio and video, reduces transmission time and results in much smaller file sizes. However, this compression can affect quality if it goes too far. The more compression there is on a waveform, the more degradation there is, and once a file is lossy compressed, this process is not reversible. This project will observe the degradation of an audio signal after the application of Singular Value Decomposition compression, a lossy compression that eliminates singular values from a signal’s matrix.

ContributorsHirte, Amanda (Author) / Kosut, Oliver (Thesis director) / Bliss, Daniel (Committee member) / Electrical Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148065-Thumbnail Image.png
Description

Self-efficacy in engineering, engineering identity, and coping in engineering have been shown in previous studies to be highly important in the advancement of one’s development in the field of engineering. Through the creation and deployment of a 17 question survey, undergraduate and first year masters students were asked to provide

Self-efficacy in engineering, engineering identity, and coping in engineering have been shown in previous studies to be highly important in the advancement of one’s development in the field of engineering. Through the creation and deployment of a 17 question survey, undergraduate and first year masters students were asked to provide information on their engagement at their university, their demographic information, and to rank their level of agreement with 22 statements relating to the aforementioned ideas. Using the results from the collected data, exploratory factor analysis was completed to identify the factors that existed and any correlations. No statistically significant correlations between the identified three factors and demographic or engagement information were found. There needs to be a significant increase in the data sample size for statistically significant results to be found. Additionally, there is future work needed in the creation of an engagement measure that successfully reflects the level and impact of participation in engineering activities beyond traditional coursework.

ContributorsJones, Elizabeth Michelle (Author) / Ganesh, Tirupalavanam (Thesis director) / Graham, Kaely (Committee member) / Electrical Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
136314-Thumbnail Image.png
Description
The world of a hearing impaired person is much different than that of somebody capable of discerning different frequencies and magnitudes of sound waves via their ears. This is especially true when hearing impaired people play video games. In most video games, surround sound is fed through some sort of

The world of a hearing impaired person is much different than that of somebody capable of discerning different frequencies and magnitudes of sound waves via their ears. This is especially true when hearing impaired people play video games. In most video games, surround sound is fed through some sort of digital output to headphones or speakers. Based on this information, the gamer can discern where a particular stimulus is coming from and whether or not that is a threat to their wellbeing within the virtual world. People with reliable hearing have a distinct advantage over hearing impaired people in the fact that they can gather information not just from what is in front of them, but from every angle relative to the way they're facing. The purpose of this project was to find a way to even the playing field, so that a person hard of hearing could also receive the sensory feedback that any other person would get while playing video games To do this, visual surround sound was created. This is a system that takes a surround sound input, and illuminates LEDs around the periphery of glasses based on the direction, frequency and amplitude of the audio wave. This provides the user with crucial information on the whereabouts of different elements within the game. In this paper, the research and development of Visual Surround Sound is discussed along with its viability in regards to a deaf person's ability to learn the technology, and decipher the visual cues.
ContributorsKadi, Danyal (Co-author) / Burrell, Nathaneal (Co-author) / Butler, Kristi (Co-author) / Wright, Gavin (Co-author) / Kosut, Oliver (Thesis director) / Bliss, Daniel (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2015-05
135896-Thumbnail Image.png
Description
The purpose of the solar powered quadcopter is to join together the growing technologies of photovoltaics and quadcopters, creating a single unified device where the technologies harmonize to produce a new product with abilities beyond those of a traditional battery powered drone. Specifically, the goal is to take the battery-only

The purpose of the solar powered quadcopter is to join together the growing technologies of photovoltaics and quadcopters, creating a single unified device where the technologies harmonize to produce a new product with abilities beyond those of a traditional battery powered drone. Specifically, the goal is to take the battery-only flight time of a quadcopter loaded with a solar array and increase that flight time by 33% with additional power provided by solar cells. The major concepts explored throughout this project are quadcopter functionality and capability and solar cell power production. In order to combine these technologies, the solar power and quadcopter components were developed and analyzed individually before connecting the solar array to the quadcopter circuit and testing the design as a whole. Several solar copter models were initially developed, resulting in multiple unique quadcopter and solar cell array designs which underwent preliminary testing before settling on a finalized design which proved to be the most effective and underwent final timed flight tests. Results of these tests are showing that the technologies complement each other as anticipated and highlight promising results for future development in this area, in particular the development of a drone running on solar power alone. Applications for a product such as this are very promising in many fields, including the industries of power, defense, consumer goods and services, entertainment, marketing, and medical. Also, becoming a more popular device for UAV hobbyists, such developments would be very appealing for leisure flying and personal photography purposes as well.
ContributorsMartin, Heather Catrina (Author) / Bowden, Stuart (Thesis director) / Aberle, James (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2015-12
Description
Every engineer is responsible for completing a capstone project as a culmination of accredited university learning to demonstrate technical knowledge and enhance interpersonal skills, like teamwork, communication, time management, and problem solving. This project, with three or four engineers working together in a group, emphasizes not only the importance of

Every engineer is responsible for completing a capstone project as a culmination of accredited university learning to demonstrate technical knowledge and enhance interpersonal skills, like teamwork, communication, time management, and problem solving. This project, with three or four engineers working together in a group, emphasizes not only the importance of technical skills acquired through laboratory procedures and coursework, but the significance of soft skills as one transitions from a university to a professional workplace; it also enhances the understanding of an engineer's obligation to ethically improve society by harnessing technical knowledge to bring about change. The CC2541 Smart SensorTag is a device manufactured by Texas Instruments that focuses on the use of wireless sensors to create low energy applications, or apps; it is equipped with Bluetooth Smart, which enables it to communicate wirelessly with similar devices like smart phones and computers, assisting greatly in app development. The device contains six built-in sensors, which can be utilized to track and log personal data in real-time; these sensors include a gyroscope, accelerometer, humidifier, thermometer, barometer, and magnetometer. By combining the data obtained through the sensors with the ability to communicate wirelessly, the SensorTag can be used to develop apps in multiple fields, including fitness, recreation, health, safety, and more. Team SensorTag chose to focus on health and safety issues to complete its capstone project, creating applications intended for use by senior citizens who live alone or in assisted care homes. Using the SensorTag's ability to track multiple local variables, the team worked to collect data that verified the accuracy and quality of the sensors through repeated experimental trials. Once the sensors were tested, the team developed applications accessible via smart phones or computers to trigger an alarm and send an alert via vibration, e-mail, or Tweet if the SensorTag detects a fall. The fall detection service utilizes the accelerometer and gyroscope sensors with the hope that such a system will prevent severe injuries among the elderly, allow them to function more independently, and improve their quality of life, which is the obligation of engineers to better through their work.
ContributorsMartin, Katherine Julia (Author) / Thornton, Trevor (Thesis director) / Goryll, Michael (Committee member) / Electrical Engineering Program (Contributor) / School of Film, Dance and Theatre (Contributor) / Barrett, The Honors College (Contributor)
Created2015-12
135759-Thumbnail Image.png
Description
The apparent phenomenon of the human eye retaining images for fractions of a second after the light source has gone is known as Persistence of Vision. While its causes are not fully understood, it can be taken advantage of in order to create illusions which trick the mind into perceiving

The apparent phenomenon of the human eye retaining images for fractions of a second after the light source has gone is known as Persistence of Vision. While its causes are not fully understood, it can be taken advantage of in order to create illusions which trick the mind into perceiving something which, in actuality, is very different from what the mind portrays. It has motivated many creative engineering technologies in the past and is the core for how we perceive motion in movies and animations. This project applies the persistence of vision concept to a lesser explored medium; the wheel of a moving bicycle. The motion of the wheel, along with intelligent control of discrete LEDs, create vibrant illusions of solid lines and shapes. These shapes make up the image to be displayed on the bike wheel. The rotation of the bike wheel can be compensated for in order to produce a standing image (or images) of the user's choosing. This thesis details how the mechanism for conducting the individual LEDs was created in order to produce a device which is capable of delivering colorful, standing images of the user's choosing.
ContributorsSaltwick, Ian Mark (Author) / Goryll, Michael (Thesis director) / Kozicki, Michael (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136937-Thumbnail Image.png
Description
Lighting Audio is a team of senior electrical engineering students at the Arizona State University mentored by Director Emeritus Professor Ronald Roedel and 2nd Committee Member George Karady attempting to prove the feasibility of a consumer grade plasma arc speaker. The plasma arc speaker is a project that explores the

Lighting Audio is a team of senior electrical engineering students at the Arizona State University mentored by Director Emeritus Professor Ronald Roedel and 2nd Committee Member George Karady attempting to prove the feasibility of a consumer grade plasma arc speaker. The plasma arc speaker is a project that explores the use of high voltage arcs to produce audible sound amplification. The goal of the project is to prove feasibility that a consumer grade plasma arc speaker could exist in the marketplace. The inherent challenge was producing audio amplification that could compete with current loudspeakers all while ensuring user safety from the hazards of high voltage and current shock, electromagnetic damage, and ozone from the plasma arc. The project has thus far covered the process of design conception to realization of a prototype device. The operation of the plasma arc speaker is based on the high voltage plasma arc created between two electrodes. The plasma arc rapidly heats and cools the surrounding air creating changes in air pressure which vibrate the air. These pockets of pressurized air are heard as sound. The circuit incorporates a flyback transformer responsible for creating the high voltage necessary for arcing.
ContributorsNandan, Rahul S (Author) / Roedel, Ronald (Thesis director) / Huffman, James (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2014-05
136956-Thumbnail Image.png
Description
Lighting Audio is a team of senior electrical engineering students at the Arizona State University mentored by Director Emeritus Professor Ronald Roedel and 2nd Committee Member George Karady attempting to prove the feasibility of a consumer grade plasma arc speaker. The plasma arc speaker is a project that explores the

Lighting Audio is a team of senior electrical engineering students at the Arizona State University mentored by Director Emeritus Professor Ronald Roedel and 2nd Committee Member George Karady attempting to prove the feasibility of a consumer grade plasma arc speaker. The plasma arc speaker is a project that explores the use of high voltage arcs to produce audible sound amplification. The goal of the project is to prove feasibility that a consumer grade plasma arc speaker could exist in the marketplace. The inherent challenge was producing audio amplification that could compete with current loudspeakers all while ensuring user safety from the hazards of high voltage and current shock, electromagnetic damage, and ozone from the plasma arc. The project has thus far covered the process of design conception to realization of a prototype device. The operation of the plasma arc speaker is based on the high voltage plasma arc created between two electrodes. The plasma arc rapidly heats and cools the surrounding air creating changes in air pressure which vibrate the air. These pockets of pressurized air are heard as sound. The circuit incorporates a flyback transformer responsible for creating the high voltage necessary for arcing.
ContributorsNandan, Rahul S (Author) / Roedel, Ronald (Thesis director) / Huffman, James (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2014-05