Matching Items (29)
Filtering by

Clear all filters

151475-Thumbnail Image.png
Description
The cyber-physical systems (CPS) are emerging as the underpinning technology for major industries in the 21-th century. This dissertation is focused on two fundamental issues in cyber-physical systems: network interdependence and information dynamics. It consists of the following two main thrusts. The first thrust is targeted at understanding the impact

The cyber-physical systems (CPS) are emerging as the underpinning technology for major industries in the 21-th century. This dissertation is focused on two fundamental issues in cyber-physical systems: network interdependence and information dynamics. It consists of the following two main thrusts. The first thrust is targeted at understanding the impact of network interdependence. It is shown that a cyber-physical system built upon multiple interdependent networks are more vulnerable to attacks since node failures in one network may result in failures in the other network, causing a cascade of failures that would potentially lead to the collapse of the entire infrastructure. There is thus a need to develop a new network science for modeling and quantifying cascading failures in multiple interdependent networks, and to develop network management algorithms that improve network robustness and ensure overall network reliability against cascading failures. To enhance the system robustness, a "regular" allocation strategy is proposed that yields better resistance against cascading failures compared to all possible existing strategies. Furthermore, in view of the load redistribution feature in many physical infrastructure networks, e.g., power grids, a CPS model is developed where the threshold model and the giant connected component model are used to capture the node failures in the physical infrastructure network and the cyber network, respectively. The second thrust is centered around the information dynamics in the CPS. One speculation is that the interconnections over multiple networks can facilitate information diffusion since information propagation in one network can trigger further spread in the other network. With this insight, a theoretical framework is developed to analyze information epidemic across multiple interconnecting networks. It is shown that the conjoining among networks can dramatically speed up message diffusion. Along a different avenue, many cyber-physical systems rely on wireless networks which offer platforms for information exchanges. To optimize the QoS of wireless networks, there is a need to develop a high-throughput and low-complexity scheduling algorithm to control link dynamics. To that end, distributed link scheduling algorithms are explored for multi-hop MIMO networks and two CSMA algorithms under the continuous-time model and the discrete-time model are devised, respectively.
ContributorsQian, Dajun (Author) / Zhang, Junshan (Thesis advisor) / Ying, Lei (Committee member) / Zhang, Yanchao (Committee member) / Cochran, Douglas (Committee member) / Arizona State University (Publisher)
Created2012
151982-Thumbnail Image.png
Description
The rapid advances in wireless communications and networking have given rise to a number of emerging heterogeneous wireless and mobile networks along with novel networking paradigms, including wireless sensor networks, mobile crowdsourcing, and mobile social networking. While offering promising solutions to a wide range of new applications, their widespread adoption

The rapid advances in wireless communications and networking have given rise to a number of emerging heterogeneous wireless and mobile networks along with novel networking paradigms, including wireless sensor networks, mobile crowdsourcing, and mobile social networking. While offering promising solutions to a wide range of new applications, their widespread adoption and large-scale deployment are often hindered by people's concerns about the security, user privacy, or both. In this dissertation, we aim to address a number of challenging security and privacy issues in heterogeneous wireless and mobile networks in an attempt to foster their widespread adoption. Our contributions are mainly fivefold. First, we introduce a novel secure and loss-resilient code dissemination scheme for wireless sensor networks deployed in hostile and harsh environments. Second, we devise a novel scheme to enable mobile users to detect any inauthentic or unsound location-based top-k query result returned by an untrusted location-based service providers. Third, we develop a novel verifiable privacy-preserving aggregation scheme for people-centric mobile sensing systems. Fourth, we present a suite of privacy-preserving profile matching protocols for proximity-based mobile social networking, which can support a wide range of matching metrics with different privacy levels. Last, we present a secure combination scheme for crowdsourcing-based cooperative spectrum sensing systems that can enable robust primary user detection even when malicious cognitive radio users constitute the majority.
ContributorsZhang, Rui (Author) / Zhang, Yanchao (Thesis advisor) / Duman, Tolga Mete (Committee member) / Xue, Guoliang (Committee member) / Zhang, Junshan (Committee member) / Arizona State University (Publisher)
Created2013
152113-Thumbnail Image.png
Description
The rapid advancement of wireless technology has instigated the broad deployment of wireless networks. Different types of networks have been developed, including wireless sensor networks, mobile ad hoc networks, wireless local area networks, and cellular networks. These networks have different structures and applications, and require different control algorithms. The focus

The rapid advancement of wireless technology has instigated the broad deployment of wireless networks. Different types of networks have been developed, including wireless sensor networks, mobile ad hoc networks, wireless local area networks, and cellular networks. These networks have different structures and applications, and require different control algorithms. The focus of this thesis is to design scheduling and power control algorithms in wireless networks, and analyze their performances. In this thesis, we first study the multicast capacity of wireless ad hoc networks. Gupta and Kumar studied the scaling law of the unicast capacity of wireless ad hoc networks. They derived the order of the unicast throughput, as the number of nodes in the network goes to infinity. In our work, we characterize the scaling of the multicast capacity of large-scale MANETs under a delay constraint D. We first derive an upper bound on the multicast throughput, and then propose a lower bound on the multicast capacity by proposing a joint coding-scheduling algorithm that achieves a throughput within logarithmic factor of the upper bound. We then study the power control problem in ad-hoc wireless networks. We propose a distributed power control algorithm based on the Gibbs sampler, and prove that the algorithm is throughput optimal. Finally, we consider the scheduling algorithm in collocated wireless networks with flow-level dynamics. Specifically, we study the delay performance of workload-based scheduling algorithm with SRPT as a tie-breaking rule. We demonstrate the superior flow-level delay performance of the proposed algorithm using simulations.
ContributorsZhou, Shan (Author) / Ying, Lei (Thesis advisor) / Zhang, Yanchao (Committee member) / Zhang, Junshan (Committee member) / Xue, Guoliang (Committee member) / Arizona State University (Publisher)
Created2013
152383-Thumbnail Image.png
Description
Data centers connect a larger number of servers requiring IO and switches with low power and delay. Virtualization of IO and network is crucial for these servers, which run virtual processes for computing, storage, and apps. We propose using the PCI Express (PCIe) protocol and a new PCIe switch fabric

Data centers connect a larger number of servers requiring IO and switches with low power and delay. Virtualization of IO and network is crucial for these servers, which run virtual processes for computing, storage, and apps. We propose using the PCI Express (PCIe) protocol and a new PCIe switch fabric for IO and switch virtualization. The switch fabric has little data buffering, allowing up to 512 physical 10 Gb/s PCIe2.0 lanes to be connected via a switch fabric. The switch is scalable with adapters running multiple adaptation protocols, such as Ethernet over PCIe, PCIe over Internet, or FibreChannel over Ethernet. Such adaptation protocols allow integration of IO often required for disjoint datacenter applications such as storage and networking. The novel switch fabric based on space-time carrier sensing facilitates high bandwidth, low power, and low delay multi-protocol switching. To achieve Terabit switching, both time (high transmission speed) and space (multi-stage interconnection network) technologies are required. In this paper, we present the design of an up to 256 lanes Clos-network of multistage crossbar switch fabric for PCIe system. The switch core consists of 48 16x16 crossbar sub-switches. We also propose a new output contention resolution algorithm utilizing an out-of-band protocol of Request-To-Send (RTS), Clear-To-Send (CTS) before sending PCIe packets through the switch fabric. Preliminary power and delay estimates are provided.
ContributorsLuo, Haojun (Author) / Hui, Joseph (Thesis advisor) / Song, Hongjiang (Committee member) / Reisslein, Martin (Committee member) / Zhang, Yanchao (Committee member) / Arizona State University (Publisher)
Created2013
151055-Thumbnail Image.png
Description
Air pollution is one of the biggest challenges people face today. It is closely related to people's health condition. The agencies set up standards to regulate the air pollution. However, many of the pollutants under the regulation level may still result in adverse health effect. On the other hand, it

Air pollution is one of the biggest challenges people face today. It is closely related to people's health condition. The agencies set up standards to regulate the air pollution. However, many of the pollutants under the regulation level may still result in adverse health effect. On the other hand, it is not clear the exact mechanism of air pollutants and its health effect. So it is difficult for the health centers to advise people how to prevent the air pollutant related diseases. It is of vital importance for both the agencies and the health centers to have a better understanding of the air pollution. Based on these needs, it is crucial to establish mobile health sensors for personal exposure assessment. Here, two sensing principles are illustrated: the tuning fork platform and the colorimetric platform. Mobile devices based on these principles have been built. The detections of ozone, NOX, carbon monoxide and formaldehyde have been shown. An integrated device of nitrogen dioxide and carbon monoxide is introduced. Fan is used for sample delivery instead pump and valves to reduce the size, cost and power consumption. Finally, the future work is discussed.
ContributorsWang, Rui (Author) / Tao, Nongjian (Thesis advisor) / Forzani, Erica (Committee member) / Zhang, Yanchao (Committee member) / Karam, Lina (Committee member) / Arizona State University (Publisher)
Created2012
190798-Thumbnail Image.png
Description
With the proliferation of mobile computing and Internet-of-Things (IoT), billions of mobile and IoT devices are connected to the Internet, generating zillions of Bytes of data at the network edge. Driving by this trend, there is an urgent need to push the artificial intelligence (AI) frontiers to the network edge

With the proliferation of mobile computing and Internet-of-Things (IoT), billions of mobile and IoT devices are connected to the Internet, generating zillions of Bytes of data at the network edge. Driving by this trend, there is an urgent need to push the artificial intelligence (AI) frontiers to the network edge to unleash the potential of the edge big data fully. This dissertation aims to comprehensively study collaborative learning and optimization algorithms to build a foundation of edge intelligence. Under this common theme, this dissertation is broadly organized into three parts. The first part of this study focuses on model learning with limited data and limited computing capability at the network edge. A global model initialization is first obtained by running federated learning (FL) across many edge devices, based on which a semi-supervised algorithm is devised for an edge device to carry out quick adaptation, aiming to address the insufficiency of labeled data and to learn a personalized model efficiently. In the second part of this study, collaborative learning between the edge and the cloud is studied to achieve real-time edge intelligence. More specifically, a distributionally robust optimization (DRO) approach is proposed to enable the synergy between local data processing and cloud knowledge transfer. Two attractive uncertainty models are investigated corresponding to the cloud knowledge transfer: the distribution uncertainty set based on the cloud data distribution and the prior distribution of the edge model conditioned on the cloud model. Collaborative learning algorithms are developed along this line. The final part focuses on developing an offline model-based safe Inverse Reinforcement Learning (IRL) algorithm for connected Autonomous Vehicles (AVs). A reward penalty is introduced to penalize unsafe states, and a risk-measure-based approach is proposed to mitigate the model uncertainty introduced by offline training. The experimental results demonstrate the improvement of the proposed algorithm over the existing baselines in terms of cumulative rewards.
ContributorsZhang, Zhaofeng (Author) / Zhang, Junshan (Thesis advisor) / Zhang, Yanchao (Thesis advisor) / Dasarathy, Gautam (Committee member) / Fan, Deliang (Committee member) / Arizona State University (Publisher)
Created2023
168528-Thumbnail Image.png
Description
Existing radio access networks (RANs) allow only for very limited sharing of thecommunication and computation resources among wireless operators and heterogeneous wireless technologies. The introduced LayBack architecture facilitates communication and computation resource sharing among different wireless operators and technologies. LayBack organizes the RAN communication and multiaccess edge computing (MEC) resources into layers, including a

Existing radio access networks (RANs) allow only for very limited sharing of thecommunication and computation resources among wireless operators and heterogeneous wireless technologies. The introduced LayBack architecture facilitates communication and computation resource sharing among different wireless operators and technologies. LayBack organizes the RAN communication and multiaccess edge computing (MEC) resources into layers, including a devices layer, a radio node (enhanced Node B and access point) layer, and a gateway layer. The layback optimization study addresses the problem of how a central SDN orchestrator can flexibly share the total backhaul capacity of the various wireless operators among their gateways and radio nodes (e.g., LTE enhanced Node Bs or Wi-Fi access points). In order to facilitate flexible network service virtualization and migration, network functions (NFs) are increasingly executed by software modules as so-called "softwarized NFs" on General-Purpose Computing (GPC) platforms and infrastructures. GPC platforms are not specifically designed to efficiently execute NFs with their typically intense Input/Output (I/O) demands. Recently, numerous hardware-based accelerations have been developed to augment GPC platforms and infrastructures, e.g., the central processing unit (CPU) and memory, to efficiently execute NFs. The computing capabilities of client devices are continuously increasing; at the same time, demands for ultra-low latency (ULL) services are increasing. These ULL services can be provided by migrating some micro-service container computations from the cloud and multi-access edge computing (MEC) to the client devices.
ContributorsShantharama, Prateek (Author) / Reisslein, Martin (Thesis advisor) / McGarry, Michael (Committee member) / Thyagaturu, Akhilesh (Committee member) / Zhang, Yanchao (Committee member) / Arizona State University (Publisher)
Created2022
168293-Thumbnail Image.png
Description
Edge networks pose unique challenges for machine learning and network management. The primary objective of this dissertation is to study deep learning and adaptive control aspects of edge networks and to address some of the unique challenges therein. This dissertation explores four particular problems of interest at the intersection of

Edge networks pose unique challenges for machine learning and network management. The primary objective of this dissertation is to study deep learning and adaptive control aspects of edge networks and to address some of the unique challenges therein. This dissertation explores four particular problems of interest at the intersection of edge intelligence, deep learning and network management. The first problem explores the learning of generative models in edge learning setting. Since the learning tasks in similar environments share model similarity, it is plausible to leverage pre-trained generative models from other edge nodes. Appealing to optimal transport theory tailored towards Wasserstein-1 generative adversarial networks, this part aims to develop a framework which systematically optimizes the generative model learning performance using local data at the edge node while exploiting the adaptive coalescence of pre-trained generative models from other nodes. In the second part, a many-to-one wireless architecture for federated learning at the network edge, where multiple edge devices collaboratively train a model using local data, is considered. The unreliable nature of wireless connectivity, togetherwith the constraints in computing resources at edge devices, dictates that the local updates at edge devices should be carefully crafted and compressed to match the wireless communication resources available and should work in concert with the receiver. Therefore, a Stochastic Gradient Descent based bandlimited coordinate descent algorithm is designed for such settings. The third part explores the adaptive traffic engineering algorithms in a dynamic network environment. The ages of traffic measurements exhibit significant variation due to asynchronization and random communication delays between routers and controllers. Inspired by the software defined networking architecture, a controller-assisted distributed routing scheme with recursive link weight reconfigurations, accounting for the impact of measurement ages and routing instability, is devised. The final part focuses on developing a federated learning based framework for traffic reshaping of electric vehicle (EV) charging. The absence of private EV owner information and scattered EV charging data among charging stations motivates the utilization of a federated learning approach. Federated learning algorithms are devised to minimize peak EV charging demand both spatially and temporarily, while maximizing the charging station profit.
ContributorsDedeoglu, Mehmet (Author) / Zhang, Junshan (Thesis advisor) / Kosut, Oliver (Committee member) / Zhang, Yanchao (Committee member) / Fan, Deliang (Committee member) / Arizona State University (Publisher)
Created2021
156796-Thumbnail Image.png
Description
Mobile devices have penetrated into every aspect of modern world. For one thing, they are becoming ubiquitous in daily life. For the other thing, they are storing more and more data, including sensitive data. Therefore, security and privacy of mobile devices are indispensable. This dissertation consists of five parts: two

Mobile devices have penetrated into every aspect of modern world. For one thing, they are becoming ubiquitous in daily life. For the other thing, they are storing more and more data, including sensitive data. Therefore, security and privacy of mobile devices are indispensable. This dissertation consists of five parts: two authentication schemes, two attacks, and one countermeasure related to security and privacy of mobile devices.

Specifically, in Chapter 1, I give an overview the challenges and existing solutions in these areas. In Chapter 2, a novel authentication scheme is presented, which is based on a user’s tapping or sliding on the touchscreen of a mobile device. In Chapter 3, I focus on mobile app fingerprinting and propose a method based on analyzing the power profiles of targeted mobile devices. In Chapter 4, I mainly explore a novel liveness detection method for face authentication on mobile devices. In Chapter 5, I investigate a novel keystroke inference attack on mobile devices based on user eye movements. In Chapter 6, a novel authentication scheme is proposed, based on detecting a user’s finger gesture through acoustic sensing. In Chapter 7, I discuss the future work.
ContributorsChen, Yimin (Author) / Zhang, Yanchao (Thesis advisor) / Zhang, Junshan (Committee member) / Reisslein, Martin (Committee member) / Ying, Lei (Committee member) / Arizona State University (Publisher)
Created2018
157188-Thumbnail Image.png
Description
The commercial semiconductor industry is gearing up for 5G communications in the 28GHz and higher band. In order to maintain the same relative receiver sensitivity, a larger number of antenna elements are required; the larger number of antenna elements is, in turn, driving semiconductor development. The purpose

The commercial semiconductor industry is gearing up for 5G communications in the 28GHz and higher band. In order to maintain the same relative receiver sensitivity, a larger number of antenna elements are required; the larger number of antenna elements is, in turn, driving semiconductor development. The purpose of this paper is to introduce a new method of dividing wireless communication protocols (such as the 802.11a/b/g
and cellular UMTS MAC protocols) across multiple unreliable communication links using a new link layer communication model in concert with a smart antenna aperture design referred to as Vector Antenna. A vector antenna is a ‘smart’ antenna system and as any smart antenna aperture, the design inherently requires unique microwave component performance as well as Digital Signal Processing (DSP) capabilities. This performance and these capabilities are further enhanced with a patented wireless protocol stack capability.
ContributorsJames, Frank Lee (Author) / Reisslein, Martin (Thesis advisor) / Seeling, Patrick (Thesis advisor) / McGarry, Michael (Committee member) / Zhang, Yanchao (Committee member) / Arizona State University (Publisher)
Created2019