Matching Items (18)
Filtering by

Clear all filters

150289-Thumbnail Image.png
Description
A primary motivation of research in photovoltaic technology is to obtain higher efficiency photovoltaic devices at reduced cost of production so that solar electricity can be cost competitive. The majority of photovoltaic technologies are based on p-n junction, with efficiency potential being much lower than the thermodynamic limits of individual

A primary motivation of research in photovoltaic technology is to obtain higher efficiency photovoltaic devices at reduced cost of production so that solar electricity can be cost competitive. The majority of photovoltaic technologies are based on p-n junction, with efficiency potential being much lower than the thermodynamic limits of individual technologies and thereby providing substantial scope for further improvements in efficiency. The thesis explores photovoltaic devices using new physical processes that rely on thin layers and are capable of attaining the thermodynamic limit of photovoltaic technology. Silicon heterostructure is one of the candidate technologies in which thin films induce a minority carrier collecting junction in silicon and the devices can achieve efficiency close to the thermodynamic limits of silicon technology. The thesis proposes and experimentally establishes a new theory explaining the operation of silicon heterostructure solar cells. The theory will assist in identifying the optimum properties of thin film materials for silicon heterostructure and help in design and characterization of the devices, along with aiding in developing new devices based on this technology. The efficiency potential of silicon heterostructure is constrained by the thermodynamic limit (31%) of single junction solar cell and is considerably lower than the limit of photovoltaic conversion (~ 80 %). A further improvement in photovoltaic conversion efficiency is possible by implementing a multiple quasi-fermi level system (MQFL). A MQFL allows the absorption of sub band gap photons with current being extracted at a higher band-gap, thereby allowing to overcome the efficiency limit of single junction devices. A MQFL can be realized either by thin epitaxial layers of alternating higher and lower band gap material with nearly lattice matched (quantum well) or highly lattice mismatched (quantum dot) structure. The thesis identifies the material combination for quantum well structure and calculates the absorption coefficient of a MQFl based on quantum well. GaAsSb (barrier)/InAs(dot) was identified as a candidate material for MQFL using quantum dot. The thesis explains the growth mechanism of GaAsSb and the optimization of GaAsSb and GaAs heterointerface.
ContributorsGhosha, Kuṇāla (Author) / Bowden, Stuart (Thesis advisor) / Honsberg, Christiana (Thesis advisor) / Vasileska, Dragica (Committee member) / Goodnick, Stephen (Committee member) / Arizona State University (Publisher)
Created2011
151513-Thumbnail Image.png
Description
Ball Grid Array (BGA) using lead-free or lead-rich solder materials are widely used as Second Level Interconnects (SLI) in mounting packaged components to the printed circuit board (PCB). The reliability of these solder joints is of significant importance to the performance of microelectronics components and systems. Product design/form-factor, solder material,

Ball Grid Array (BGA) using lead-free or lead-rich solder materials are widely used as Second Level Interconnects (SLI) in mounting packaged components to the printed circuit board (PCB). The reliability of these solder joints is of significant importance to the performance of microelectronics components and systems. Product design/form-factor, solder material, manufacturing process, use condition, as well as, the inherent variabilities present in the system, greatly influence product reliability. Accurate reliability analysis requires an integrated approach to concurrently account for all these factors and their synergistic effects. Such an integrated and robust methodology can be used in design and development of new and advanced microelectronics systems and can provide significant improvement in cycle-time, cost, and reliability. IMPRPK approach is based on a probabilistic methodology, focusing on three major tasks of (1) Characterization of BGA solder joints to identify failure mechanisms and obtain statistical data, (2) Finite Element analysis (FEM) to predict system response needed for life prediction, and (3) development of a probabilistic methodology to predict the reliability, as well as, the sensitivity of the system to various parameters and the variabilities. These tasks and the predictive capabilities of IMPRPK in microelectronic reliability analysis are discussed.
ContributorsFallah-Adl, Ali (Author) / Tasooji, Amaneh (Thesis advisor) / Krause, Stephen (Committee member) / Alford, Terry (Committee member) / Jiang, Hanqing (Committee member) / Mahajan, Ravi (Committee member) / Arizona State University (Publisher)
Created2013
150870-Thumbnail Image.png
Description
Soft magnetic alloys play a significant role for magnetic recording applications and highly sensitivity magnetic field sensors. In order to sustain the magnetic areal density growth, development of new synthesis techniques and materials is necessary. In this work, the effect of oxygen incorporation during electrodeposition of CoFe alloys on magnetic

Soft magnetic alloys play a significant role for magnetic recording applications and highly sensitivity magnetic field sensors. In order to sustain the magnetic areal density growth, development of new synthesis techniques and materials is necessary. In this work, the effect of oxygen incorporation during electrodeposition of CoFe alloys on magnetic properties, magnetoresistance and structural properties has been studied. Understanding the magnetic properties often required knowledge of oxygen distribution and structural properties of the grown films. Transmission electron microscopy (TEM) was a powerful tool in this study to correlate the oxygen-distribution nanostructure to the magnetic properties of deposited films. Off-axis electron holography in TEM was used to measure magnetic domain wall width in the deposited films. Elemental depth profiles of Fe, Co, O were investigated by secondary ion mass spectroscopy (SIMS). Magnetic properties have been determined by superconducting quantum interference device (SQUID) measurements. Oxygen content in the CoFe deposited films was controlled by electrolyte composition. Films were deposited on Si 100 substrates and on other substrates such as Cu and Al. However, a good film quality was achieved on Si substrate. Electron energy loss and x-ray spectroscopies showed that the low oxygen films contained intragranular Fe2+ oxide (FeO) particles and that the high oxygen films contained intergranular Fe3+ (Fe2O3) along grain boundaries. The films with oxide present at the grain boundary had significantly increased coercivity, magnetoresistance and reduced saturation magnetization relative to the lower oxygen content films with intragranular oxide. The differences in magnetic properties between low oxygen and high oxygen concentration films were attributed to stronger mobile domain wall interactions with the grain boundary oxide layers. The very high magnetoresistance values were achieved for magnetic devices with nanocontact dimension < 100 nm and oxide incorporation in this nanoconfined geometry. The content of oxide phase in nanocontact was controlled by concentration of the Fe3+ ions in the electrodeposition solution. Magnetic device integrity was improved by varying amount of additive into plating solution. These results indicated that electrodeposited CoFe nanocontact is a novel class of materials with large application for magnetic field sensors.
ContributorsElhalawaty, Shereen (Author) / Carpenter, Ray (Thesis advisor) / Chamberlin, Ralph (Committee member) / McCartney, Martha (Committee member) / Alford, Terry (Committee member) / Arizona State University (Publisher)
Created2012
171937-Thumbnail Image.png
Description
Microstructure refinement and alloy additions are considered potential routes to increase high temperature performance of existing metallic superalloys used under extreme conditions. Nanocrystalline (NC) Cu-10at%Ta exhibits such improvements over microstructurally unstable NC metals, leading to enhanced creep behavior compared to its coarse-grained (CG) counterparts. However, the low melting point of

Microstructure refinement and alloy additions are considered potential routes to increase high temperature performance of existing metallic superalloys used under extreme conditions. Nanocrystalline (NC) Cu-10at%Ta exhibits such improvements over microstructurally unstable NC metals, leading to enhanced creep behavior compared to its coarse-grained (CG) counterparts. However, the low melting point of Cu compared to other FCC metals, e.g., Ni, might lead to an early onset of diffusional creep mechanisms. Thus, this research seeks to study the thermo-mechanical behavior and stability of hierarchical (prepared using arc-melting) and NC (prepared by collaborators through powder pressing and annealing) Ni-Y-Zr alloys where Zr is expected to provide solid solution and grain boundary strengthening in hierarchical and NC alloys, respectively, while Ni-Y and Ni-Zr intermetallic precipitates (IMCs) would provide kinetic stability. Hierarchical alloys had microstructures stable up to 1100 °C with ultrafine eutectic of ~300 nm, dendritic arm spacing of ~10 μm, and grain size ~1-2 mm. Room temperature hardness tests along with uniaxial compression performed at 25 and 600 °C revealed that microhardness and yield strength of hierarchical alloys with small amounts of Y (0.5-1wt%) and Zr (1.5-3 wt%) were comparable to Ni-superalloys, due to the hierarchical microstructure and potential presence of nanoscale IMCs. In contrast, NC alloys of the same composition were found to be twice as hard as the hierarchical alloys. Creep tests at 0.5 homologous temperature showed active Coble creep mechanisms in hierarchical alloys at low stresses with creep rates slower than Fe-based superalloys and dislocation creep mechanisms at higher stresses. Creep in NC alloys at lower stresses was only 20 times faster than hierarchical alloys, with the difference in grain size ranging from 10^3 to 10^6 times at the same temperature. These NC alloys showed enhanced creep properties over other NC metals and are expected to have rates equal to or improved over the CG hierarchical alloys with ECAP processing techniques. Lastly, the in-situ wide-angle x-ray scattering (WAXS) measurements during quasi-static and creep tests implied stresses being carried mostly by the matrix before yielding and in the primary creep stage, respectively, while relaxation was observed in Ni5Zr for both hierarchical and NC alloys. Beyond yielding and in the secondary creep stage, lattice strains reached a steady state, thereby, an equilibrium between plastic strain rates was achieved across different phases, so that deformation reaches a saturation state where strain hardening effects are compensated by recovery mechanisms.
ContributorsSharma, Shruti (Author) / Peralta, Pedro (Thesis advisor) / Alford, Terry (Committee member) / Jiao, Yang (Committee member) / Solanki, Kiran (Committee member) / Arizona State University (Publisher)
Created2022
171637-Thumbnail Image.png
Description
Electron Paramagnetic Resonance (EPR) has facilitated great scientific advancements in many fields, like material science, engineering, medicine, biology, and health. EPR provided the ability to investigate samples on molecular level to detect chemical composition and identify harmful substances like free radicals. This thesis aims to explore current health and diagnostics

Electron Paramagnetic Resonance (EPR) has facilitated great scientific advancements in many fields, like material science, engineering, medicine, biology, and health. EPR provided the ability to investigate samples on molecular level to detect chemical composition and identify harmful substances like free radicals. This thesis aims to explore current health and diagnostics EPR research and investigate the free radical content in related paramagnetic centers. Examining paramagnetic diagnostic markers of Cancer, Sicklecell disease, oxidative stress, and food oxidation. After exploring current literature on EPR, an experiment is designed and conducted to test seven different coffee samples (Turkish coffee, Espresso Coffee, European Coffee, Ground Arabic Coffee, American Coffee, Roasted Arabic Coffee, and Green Arabic Coffee), using Bruker ELEXSYS E580 spectrometer at x-band and under both room temperature (298 K) and low temperature (106 -113 K). Several microwave powers (1, mW, 0.25 mW, 0.16 mW, 0.06 mW, 0.04 mW) and different modulation frequency (10 G, 5 G, 3 G) are used. The results revealed average g-value was 2.009, highest linewidth was 16.312. Espresso coffee had the highest concentration of radicals, and green Arabic coffee beans had the lowest. Obtained spectra showed signals of Reactive Oxygen Species (ROS) radicals; believed to be result of natural oxidation process, as well as trace amounts of Fe3+ and other transition metals impurities, likely to be naturally found in coffee or resulting from the process of coffee production.
ContributorsMaki, Husain (Author) / Newman, Nathan (Thesis advisor) / Alford, Terry (Committee member) / Chamberlin, Ralph (Committee member) / Arizona State University (Publisher)
Created2022
168529-Thumbnail Image.png
Description
To keep up with the increasing demand for solar energy, higher efficiencies are necessary while keeping cost at a minimum. The easiest theoretical way to achieve that is using silicon-based multi-junction solar cells. However, there are major challenges in effectively implementing such a system. Much work has been done recently

To keep up with the increasing demand for solar energy, higher efficiencies are necessary while keeping cost at a minimum. The easiest theoretical way to achieve that is using silicon-based multi-junction solar cells. However, there are major challenges in effectively implementing such a system. Much work has been done recently to integrate III-V with Si for multi-junction solar cell purposes. The focus of this paper is to explore GaP-based dilute nitrides as a possible top cell candidate for Si-based multi-junctions. The direct growth of dilute nitrides in a lattice-matched configuration epitaxially in literature is reviewed. The problems associated with such growths are outlined and pathways to mitigate these problems are presented. The need for a GaP buffer layer between the dilute nitride film and Si is established. Defects in GaP/Si system are explored in detail and a study on pit formation during such growth is performed. Effective suppression of pits in GaP surface grown on Si is achieved. Issues facing GaP-based dilute nitrides in terms of material properties are outlined. Review of these challenges is done and some possible future areas of interest to improve material quality are established. Finally, the growth process of dilute nitrides using Molecular Beam Epitaxy tool is explained. Results for GaNP grown on Si pre and post growth treatments are detailed.
ContributorsMurali, Srinath (Author) / Honsberg, Christiana (Thesis advisor) / Goodnick, Stephen (Committee member) / King, Richard (Committee member) / Goryll, Michael (Committee member) / Arizona State University (Publisher)
Created2022
161954-Thumbnail Image.png
Description
In this dissertation, the nanofabrication process is characterized for fabrication of nanostructure on surface of silicon and gallium phosphide using silica nanosphere lithography (SNL) and metal assisted chemical etching (MACE) process. The SNL process allows fast process time and well defined silica nanosphere monolayer by spin-coating process after mixing N,N-dimethyl-formamide

In this dissertation, the nanofabrication process is characterized for fabrication of nanostructure on surface of silicon and gallium phosphide using silica nanosphere lithography (SNL) and metal assisted chemical etching (MACE) process. The SNL process allows fast process time and well defined silica nanosphere monolayer by spin-coating process after mixing N,N-dimethyl-formamide (DMF) solvent. The MACE process achieves the high aspect ratio structure fabrication using the reaction between metal and wet chemical. The nanostructures are fabricated on Si surface for enhanced light management, but, without proper surface passivation those gains hardly impact the performance of the solar cell. The surface passivation of nanostructures is challenging, not only due to larger surface areas and aspect ratios, but also has a direct result of the nanofabrication processes. In this research, the surface passivation of silicon nanostructures is improved by modifying the silica nanosphere lithography (SNL) and the metal assisted chemical etching (MACE) processes, frequently used to fabricate nanostructures. The implementation of a protective silicon oxide layer is proposed prior to the lithography process to mitigate the impact of the plasma etching during the SNL. Additionally, several adhesion layers are studied, chromium (Cr), nickel (Ni) and titanium (Ti) with gold (Au), used in the MACE process. The metal contamination is one of main damage and Ti makes the mitigation of metal contamination. Finally, a new chemical etching step is introduced, using potassium hydroxide at room temperature, to smooth the surface of the nanostructures after the MACE process. This chemical treatment allows to improve passivation by surface area control and removing surface defects. In this research, I demonstrate the Aluminum Oxide (Al2O3) passivation on nanostructure using atomic layer deposition (ALD) process. 10nm of Al2O3 layer makes effective passivation on nanostructure with optimized post annealing in forming gas (N2/H2) environment. However, 10nm thickness is not suitable for hetero structure because of carrier transportation. For carrier transportation, ultrathin Al2O3 (≤ 1nm) layer is used for passivation, but effective passivation is not achieved because of insufficient hydrogen contents. This issue is solved to use additional ultrathin SiO2 (1nm) below Al2O3 layer and hydrogenation from doped a-Si:H. Moreover, the nanostructure is creased on gallium phosphide (GaP) by SNL and MACE process. The fabrication process is modified by control of metal layer and MACE solution.
ContributorsKim, Sangpyeong (Author) / Honsberg, Christiana (Thesis advisor) / Bowden, Stuart (Committee member) / Goryll, Michael (Committee member) / Augusto, Andre (Committee member) / Arizona State University (Publisher)
Created2021
161961-Thumbnail Image.png
Description
Organic materials have emerged as an attractive component of electronics over the past few decades, particularly in the development of efficient and stable organic light-emitting diodes (OLEDs) and organic neuromorphic devices. The electrical, chemical, physical, and optical studies of organic materials and their corresponding devices have been conducted for efficient

Organic materials have emerged as an attractive component of electronics over the past few decades, particularly in the development of efficient and stable organic light-emitting diodes (OLEDs) and organic neuromorphic devices. The electrical, chemical, physical, and optical studies of organic materials and their corresponding devices have been conducted for efficient and stable electronics. The development of efficient and stable deep blue OLED devices remains a challenge that has obstructed the progress of large-scale OLED commercialization. One approach was taken to achieve a deep blue emitter through a color tuning strategy. A new complex, PtNONS56-dtb, was designed and synthesized by controlling the energy gap between T1 and T2 energy states to achieve narrowed and blueshifted emission spectra. This emitter material showed an emission spectrum at 460 nm with a FWHM of 59 nm at room temperature in PMMA, and the PtNONS56-dtb-based device exhibited a peak EQE of 8.5% with CIE coordinates of (0.14, 0.27). A newly developed host and electron blocking materials were demonstrated to achieve efficient and stable OLED devices. The indolocarbazole-based materials were designed to have good hole mobility and high triplet energy. BCN34 as an electron blocking material achieved the estimated LT80 of 12509 h at 1000 cd m-2 with a peak EQE of 30.3% in devices employing Pd3O3 emitter. Additionally, a device with bi-layer emissive layer structure, using BCN34 and CBP as host materials doped with PtN3N emitter, achieved a peak EQE of 16.5% with the LT97 of 351 h at 1000 cd m-2. A new neuromorphic device using Ru(bpy)3(PF6)2 as an active layer was designed to emulate the short-term characteristics of a biological synapse. This memristive device showed a similar operational mechanism with biological synapse through the movement of ions and electronic charges. Furthermore, the performance of the device showed tunability by adding salt. Ultimately, the device with 2% LiClO4 salt shows similar timescales to short-term plasticity characteristics of biological synapses.
ContributorsShin, Samuel (Author) / Li, Jian (Thesis advisor) / Adams, James (Committee member) / Alford, Terry (Committee member) / Arizona State University (Publisher)
Created2021
157020-Thumbnail Image.png
Description
Global photovoltaic (PV) module installation in 2018 is estimated to exceed 100 GW, and crystalline Si (c-Si) solar cell-based modules have a share more than 90% of the global PV market. To reduce the social cost of PV electricity, further developments in reliability of solar panels are expected. These will

Global photovoltaic (PV) module installation in 2018 is estimated to exceed 100 GW, and crystalline Si (c-Si) solar cell-based modules have a share more than 90% of the global PV market. To reduce the social cost of PV electricity, further developments in reliability of solar panels are expected. These will lead to realize longer module lifetime and reduced levelized cost of energy. As many as 86 failure modes are observed in PV modules [1] and series resistance increase is one of the major durability issues of all. Series resistance constitutes emitter sheet resistance, metal-semiconductor contact resistance, and resistance across the metal-solder ribbon. Solder bond degradation at the cell interconnect is one of the primary causes for increase in series resistance, which is also considered to be an invisible defect [1]. Combination of intermetallic compounds (IMC) formation during soldering and their growth due to solid state diffusion over its lifetime result in formation of weak interfaces between the solar cell and the interconnect. Thermal cycling under regular operating conditions induce thermo-mechanical fatigue over these weak interfaces resulting in contact reduction or loss. Contact reduction or loss leads to increase in series resistance which further manifests into power and fill factor loss. The degree of intermixing of metallic interfaces and contact loss depends on climatic conditions as temperature and humidity (moisture ingression into the PV module laminate) play a vital role in reaction kinetics of these layers. Modules from Arizona and Florida served as a good sample set to analyze the effects of hot and humid climatic conditions respectively. The results obtained in the current thesis quantifies the thickness of IMC formation from SEM-EDS profiles, where similar modules obtained from different climatic conditions were compared. The results indicate the thickness of the IMC and detachment degree to be growing with age and operating temperatures of the module. This can be seen in CuxSny IMC which is thicker in the case of Arizona module. The results obtained from FL

ii

aged modules also show that humidity accelerates the formation of IMC as they showed thicker AgxSny layer and weak interconnect-contact interfaces as compared to Arizona modules. It is also shown that climatic conditions have different effects on rate at which CuxSny and AgxSny intermetallic compounds are formed.
ContributorsBuddha, Viswa Sai Pavan (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Alford, Terry (Thesis advisor) / Srinivasan, Devarajan (Committee member) / Arizona State University (Publisher)
Created2018
156824-Thumbnail Image.png
Description
Recent technology advancements in photovoltaics have enabled crystalline silicon (c-Si) solar cells to establish outstanding photoconversion efficiency records. Remarkable progresses in research and development have been made both on the silicon feedstock quality as well as the technology required for surface passivation, the two dominant sources of performance loss via

Recent technology advancements in photovoltaics have enabled crystalline silicon (c-Si) solar cells to establish outstanding photoconversion efficiency records. Remarkable progresses in research and development have been made both on the silicon feedstock quality as well as the technology required for surface passivation, the two dominant sources of performance loss via recombination of photo-generated charge carriers within advanced solar cell architectures.

As these two aspects of the solar cell framework improve, the need for a thorough analysis of their respective contribution under varying operation conditions has emerged along with challenges related to the lack of sensitivity of available characterization techniques. The main objective of my thesis work has been to establish a deep understanding of both “intrinsic” and “extrinsic” recombination processes that govern performance in high-quality silicon absorbers. By studying each recombination mechanism as a function of illumination and temperature, I strive to identify the lifetime limiting defects and propose a path to engineer the ultimate silicon solar cell.

This dissertation presents a detailed description of the experimental procedure required to deconvolute surface recombination contributions from bulk recombination contributions when performing lifetime spectroscopy analysis. This work proves that temperature- and injection-dependent lifetime spectroscopy (TIDLS) sensitivity can be extended to impurities concentrations down to 109 cm-3, orders of magnitude below any other characterization technique available today. A new method for the analysis of TIDLS data denominated Defect Parameters Contour Mapping (DPCM) is presented with the aim of providing a visual and intuitive tool to identify the lifetime limiting impurities in silicon material. Surface recombination velocity results are modelled by applying appropriate approaches from literature to our experimentally evaluated data, demonstrating for the first time their capability to interpret temperature-dependent data. In this way, several new results are obtained which solve long disputed aspects of surface passivation mechanisms. Finally, we experimentally evaluate the temperature-dependence of Auger lifetime and its impact on a theoretical intrinsically limited solar cell. These results decisively point to the need for a new Auger lifetime parameterization accounting for its temperature-dependence, which would in turn help understand the ultimate theoretical efficiency limit for a solar cell under real operation conditions.
ContributorsBernardini, Simone (Author) / Bertoni, Mariana I (Thesis advisor) / Coletti, Gianluca (Committee member) / Bowden, Stuart (Committee member) / Alford, Terry (Committee member) / Arizona State University (Publisher)
Created2018