Matching Items (25)
Filtering by

Clear all filters

171937-Thumbnail Image.png
Description
Microstructure refinement and alloy additions are considered potential routes to increase high temperature performance of existing metallic superalloys used under extreme conditions. Nanocrystalline (NC) Cu-10at%Ta exhibits such improvements over microstructurally unstable NC metals, leading to enhanced creep behavior compared to its coarse-grained (CG) counterparts. However, the low melting point of

Microstructure refinement and alloy additions are considered potential routes to increase high temperature performance of existing metallic superalloys used under extreme conditions. Nanocrystalline (NC) Cu-10at%Ta exhibits such improvements over microstructurally unstable NC metals, leading to enhanced creep behavior compared to its coarse-grained (CG) counterparts. However, the low melting point of Cu compared to other FCC metals, e.g., Ni, might lead to an early onset of diffusional creep mechanisms. Thus, this research seeks to study the thermo-mechanical behavior and stability of hierarchical (prepared using arc-melting) and NC (prepared by collaborators through powder pressing and annealing) Ni-Y-Zr alloys where Zr is expected to provide solid solution and grain boundary strengthening in hierarchical and NC alloys, respectively, while Ni-Y and Ni-Zr intermetallic precipitates (IMCs) would provide kinetic stability. Hierarchical alloys had microstructures stable up to 1100 °C with ultrafine eutectic of ~300 nm, dendritic arm spacing of ~10 μm, and grain size ~1-2 mm. Room temperature hardness tests along with uniaxial compression performed at 25 and 600 °C revealed that microhardness and yield strength of hierarchical alloys with small amounts of Y (0.5-1wt%) and Zr (1.5-3 wt%) were comparable to Ni-superalloys, due to the hierarchical microstructure and potential presence of nanoscale IMCs. In contrast, NC alloys of the same composition were found to be twice as hard as the hierarchical alloys. Creep tests at 0.5 homologous temperature showed active Coble creep mechanisms in hierarchical alloys at low stresses with creep rates slower than Fe-based superalloys and dislocation creep mechanisms at higher stresses. Creep in NC alloys at lower stresses was only 20 times faster than hierarchical alloys, with the difference in grain size ranging from 10^3 to 10^6 times at the same temperature. These NC alloys showed enhanced creep properties over other NC metals and are expected to have rates equal to or improved over the CG hierarchical alloys with ECAP processing techniques. Lastly, the in-situ wide-angle x-ray scattering (WAXS) measurements during quasi-static and creep tests implied stresses being carried mostly by the matrix before yielding and in the primary creep stage, respectively, while relaxation was observed in Ni5Zr for both hierarchical and NC alloys. Beyond yielding and in the secondary creep stage, lattice strains reached a steady state, thereby, an equilibrium between plastic strain rates was achieved across different phases, so that deformation reaches a saturation state where strain hardening effects are compensated by recovery mechanisms.
ContributorsSharma, Shruti (Author) / Peralta, Pedro (Thesis advisor) / Alford, Terry (Committee member) / Jiao, Yang (Committee member) / Solanki, Kiran (Committee member) / Arizona State University (Publisher)
Created2022
187523-Thumbnail Image.png
Description
The design of energy absorbing structures is driven by application specific requirements like the amount of energy to be absorbed, maximum transmitted stress that is permissible, stroke length, and available enclosing space. Cellular structures like foams are commonly leveraged in nature for energy absorption and have also found use in

The design of energy absorbing structures is driven by application specific requirements like the amount of energy to be absorbed, maximum transmitted stress that is permissible, stroke length, and available enclosing space. Cellular structures like foams are commonly leveraged in nature for energy absorption and have also found use in engineering applications. With the possibility of manufacturing complex cellular shapes using additive manufacturing technologies, there is an opportunity to explore new topologies that improve energy absorption performance. This thesis aims to systematically understand the relationships between four key elements: (i) unit cell topology, (ii) material composition, (iii) relative density, and (iv) fields; and energy absorption behavior, and then leverage this understanding to develop, implement and validate a methodology to design the ideal cellular structure energy absorber. After a review of the literature in the domain of additively manufactured cellular materials for energy absorption, results from quasi-static compression of six cellular structures (hexagonal honeycomb, auxetic and Voronoi lattice, and diamond, Gyroid, and Schwarz-P) manufactured out of AlSi10Mg and Nylon-12. These cellular structures were compared to each other in the context of four design-relevant metrics to understand the influence of cell design on the deformation and failure behavior. Three new and revised metrics for energy absorption were proposed to enable more meaningful comparisons and subsequent design selection. Triply Periodic Minimal Surface (TPMS) structures were found to have the most promising overall performance and formed the basis for the numerical investigation of the effect of fields on the energy absorption performance of TPMS structures. A continuum shell-based methodology was developed to analyze the large deformation behavior of field-driven variable thickness TPMS structures and validated against experimental data. A range of analytical and stochastic fields were then evaluated that modified the TPMS structure, some of which were found to be effective in enhancing energy absorption behavior in the structures while retaining the same relative density. Combining findings from studies on the role of cell geometry, composition, relative density, and fields, this thesis concludes with the development of a design framework that can enable the formulation of cellular material energy absorbers with idealized behavior.
ContributorsShinde, Mandar (Author) / Bhate, Dhruv (Thesis advisor) / Peralta, Pedro (Committee member) / Liu, Yongming (Committee member) / Jiao, Yang (Committee member) / Kwon, Beomjin (Committee member) / Arizona State University (Publisher)
Created2023
156798-Thumbnail Image.png
Description
Phase change materials (PCMs) are combined sensible-and-latent thermal energy storage materials that can be used to store and dissipate energy in the form of heat. PCMs incorporated into wall-element systems have been well-studied with respect to energy efficiency of building envelopes. New applications of PCMs in infrastructural concrete, e.g., for

Phase change materials (PCMs) are combined sensible-and-latent thermal energy storage materials that can be used to store and dissipate energy in the form of heat. PCMs incorporated into wall-element systems have been well-studied with respect to energy efficiency of building envelopes. New applications of PCMs in infrastructural concrete, e.g., for mitigating early-age cracking and freeze-and-thaw induced damage, have also been proposed. Hence, the focus of this dissertation is to develop a detailed understanding of the physic-chemical and thermo-mechanical characteristics of cementitious systems and novel coating systems for wall-elements containing PCM. The initial phase of this work assesses the influence of interface properties and inter-inclusion interactions between microencapsulated PCM, macroencapsulated PCM, and the cementitious matrix. The fact that these inclusions within the composites are by themselves heterogeneous, and contain multiple components necessitate careful application of models to predict the thermal properties. The next phase observes the influence of PCM inclusions on the fracture and fatigue behavior of PCM-cementitious composites. The compliant nature of the inclusion creates less variability in the fatigue life for these composites subjected to cyclic loading. The incorporation of small amounts of PCM is found to slightly improve the fracture properties compared to PCM free cementitious composites. Inelastic deformations at the crack-tip in the direction of crack opening are influenced by the microscale PCM inclusions. After initial laboratory characterization of the microstructure and evaluation of the thermo-mechanical performance of these systems, field scale applicability and performance were evaluated. Wireless temperature and strain sensors for smart monitoring were embedded within a conventional portland cement concrete pavement (PCCP) and a thermal control smart concrete pavement (TCSCP) containing PCM. The TCSCP exhibited enhanced thermal performance over multiple heating and cooling cycles. PCCP showed significant shrinkage behavior as a result of compressive strains in the reinforcement that were twice that of the TCSCP. For building applications, novel PCM-composites coatings were developed to improve and extend the thermal efficiency. These coatings demonstrated a delay in temperature by up to four hours and were found to be more cost-effective than traditional building insulating materials.

The results of this work prove the feasibility of PCMs as a temperature-regulating technology. Not only do PCMs reduce and control the temperature within cementitious systems without affecting the rate of early property development but they can also be used as an auto-adaptive technology capable of improving the thermal performance of building envelopes.
ContributorsAguayo, Matthew Joseph (Author) / Neithalath, Narayanan (Thesis advisor) / Rajan, Subramaniam D. (Committee member) / Mobasher, Barzin (Committee member) / Underwood, Benjamin (Committee member) / Liu, Yongming (Committee member) / Arizona State University (Publisher)
Created2018
156954-Thumbnail Image.png
Description
Nanolaminate materials are layered composites with layer thickness ≤ 100 nm. They exhibit unique properties due to their small length scale, the presence of a high number of interfaces and the effect of imposed constraint. This thesis focuses on the mechanical behavior of Al/SiC nanolaminates. The high strength of ceramics

Nanolaminate materials are layered composites with layer thickness ≤ 100 nm. They exhibit unique properties due to their small length scale, the presence of a high number of interfaces and the effect of imposed constraint. This thesis focuses on the mechanical behavior of Al/SiC nanolaminates. The high strength of ceramics combined with the ductility of Al makes this combination desirable. Al/SiC nanolaminates were synthesized through magnetron sputtering and have an overall thickness of ~ 20 μm which limits the characterization techniques to microscale testing methods. A large amount of work has already been done towards evaluating their mechanical properties under indentation loading and micropillar compression. The effects of temperature, orientation and layer thickness have been well established. Al/SiC nanolaminates exhibited a flaw dependent deformation, anisotropy with respect to loading direction and strengthening due to imposed constraint. However, the mechanical behavior of nanolaminates under tension and fatigue loading has not yet been studied which is critical for obtaining a complete understanding of their deformation behavior. This thesis fills this gap and presents experiments which were conducted to gain an insight into the behavior of nanolaminates under tensile and cyclic loading. The effect of layer thickness, tension-compression asymmetry and effect of a wavy microstructure on mechanical response have been presented. Further, results on in situ micropillar compression using lab-based X-ray microscope through novel experimental design are also presented. This was the first time when a resolution of 50 nms was achieved during in situ micropillar compression in a lab-based setup. Pores present in the microstructure were characterized in 3D and sites of damage initiation were correlated with the channel of pores present in the microstructure.

The understanding of these deformation mechanisms paved way for the development of co-sputtered Al/SiC composites. For these composites, Al and SiC were sputtered together in a layer. The effect of change in the atomic fraction of SiC on the microstructure and mechanical properties were evaluated. Extensive microstructural characterization was performed at the nanoscale level and Al nanocrystalline aggregates were observed dispersed in an amorphous matrix. The modulus and hardness of co- sputtered composites were much higher than their traditional counterparts owing to denser atomic packing and the absence of synthesis induced defects such as pores and columnar boundaries.
ContributorsSingh, Somya (Author) / Chawla, Nikhilesh (Thesis advisor) / Neithalath, Narayanan (Committee member) / Jiao, Yang (Committee member) / Mara, Nathan (Committee member) / Arizona State University (Publisher)
Created2018
154828-Thumbnail Image.png
Description
Improved knowledge connecting the chemistry, structure, and properties of polymers is necessary to develop advanced materials in a materials-by-design approach. Molecular dynamics (MD) simulations can provide tremendous insight into how the fine details of chemistry, molecular architecture, and microstructure affect many physical properties; however, they face well-known restrictions in their

Improved knowledge connecting the chemistry, structure, and properties of polymers is necessary to develop advanced materials in a materials-by-design approach. Molecular dynamics (MD) simulations can provide tremendous insight into how the fine details of chemistry, molecular architecture, and microstructure affect many physical properties; however, they face well-known restrictions in their applicable temporal and spatial scales. These limitations have motivated the development of computationally-efficient, coarse-grained methods to investigate how microstructural details affect thermophysical properties. In this dissertation, I summarize my research work in structure-based coarse-graining methods to establish the link between molecular-scale structure and macroscopic properties of two different polymers. Systematically coarse-grained models were developed to study the viscoelastic stress response of polyurea, a copolymer that segregates into rigid and viscous phases, at time scales characteristic of blast and impact loading. With the application of appropriate scaling parameters, the coarse-grained models can predict viscoelastic properties with a speed up of 5-6 orders of magnitude relative to the atomistic MD models. Coarse-grained models of polyethylene were also created to investigate the thermomechanical material response under shock loading. As structure-based coarse-grained methods are generally not transferable to states different from which they were calibrated at, their applicability for modeling non-equilibrium processes such as shock and impact is highly limited. To address this problem, a new model is developed that incorporates many-body interactions and is calibrated across a range of different thermodynamic states using a least square minimization scheme. The new model is validated by comparing shock Hugoniot properties with atomistic and experimental data for polyethylene. Lastly, a high fidelity coarse-grained model of polyethylene was constructed that reproduces the joint-probability distributions of structural variables such as the distributions of bond lengths and bond angles between sequential coarse-grained sites along polymer chains. This new model accurately represents the structure of both the amorphous and crystal phases of polyethylene and enabling investigation of how polymer processing such as cold-drawing and bulk crystallization affect material structure at significantly larger time and length scales than traditional molecular simulations.
ContributorsAgrawal, Vipin (Author) / Oswald, Jay (Thesis advisor) / Peralta, Pedro (Committee member) / Chamberlin, Ralph (Committee member) / Solanki, Kiran (Committee member) / Jiao, Yang (Committee member) / Arizona State University (Publisher)
Created2016
153841-Thumbnail Image.png
Description
Fracture phenomena have been extensively studied in the last several decades. Continuum mechanics-based approaches, such as finite element methods and extended finite element methods, are widely used for fracture simulation. One well-known issue of these approaches is the stress singularity resulted from the spatial discontinuity at the crack tip/front. The

Fracture phenomena have been extensively studied in the last several decades. Continuum mechanics-based approaches, such as finite element methods and extended finite element methods, are widely used for fracture simulation. One well-known issue of these approaches is the stress singularity resulted from the spatial discontinuity at the crack tip/front. The requirement of guiding criteria for various cracking behaviors, such as initiation, propagation, and branching, also poses some challenges. Comparing to the continuum based formulation, the discrete approaches, such as lattice spring method, discrete element method, and peridynamics, have certain advantages when modeling various fracture problems due to their intrinsic characteristics in modeling discontinuities.

A novel, alternative, and systematic framework based on a nonlocal lattice particle model is proposed in this study. The uniqueness of the proposed model is the inclusion of both pair-wise local and multi-body nonlocal potentials in the formulation. First, the basic ideas of the proposed framework for 2D isotropic solid are presented. Derivations for triangular and square lattice structure are discussed in detail. Both mechanical deformation and fracture process are simulated and model verification and validation are performed with existing analytical solutions and experimental observations. Following this, the extension to general 3D isotropic solids based on the proposed local and nonlocal potentials is given. Three cubic lattice structures are discussed in detail. Failure predictions using the 3D simulation are compared with experimental testing results and very good agreement is observed. Next, a lattice rotation scheme is proposed to account for the material orientation in modeling anisotropic solids. The consistency and difference compared to the classical material tangent stiffness transformation method are discussed in detail. The implicit and explicit solution methods for the proposed lattice particle model are also discussed. Finally, some conclusions and discussions based on the current study are drawn at the end.
ContributorsChen, Hailong (Author) / Liu, Yongming (Thesis advisor) / Jiao, Yang (Committee member) / Mignolet, Marc (Committee member) / Oswald, Jay (Committee member) / Solanki, Kiran (Committee member) / Arizona State University (Publisher)
Created2015
154525-Thumbnail Image.png
Description
In order to verify the dispersive nature of transverse displacement in a beam, a deep understanding of the governing partial differential equation is developed. Using the finite element method and Newmark’s method, along with Fourier transforms and other methods, the aim is to obtain consistent results across each numerical technique.

In order to verify the dispersive nature of transverse displacement in a beam, a deep understanding of the governing partial differential equation is developed. Using the finite element method and Newmark’s method, along with Fourier transforms and other methods, the aim is to obtain consistent results across each numerical technique. An analytical solution is also analyzed for the Euler-Bernoulli beam in order to gain confidence in the numerical techniques when used for more advance beam theories that do not have a known analytical solution. Three different beam theories are analyzed in this report: The Euler-Bernoulli beam theory, Rayleigh beam theory and Timoshenko beam theory. A comparison of the results show the difference between each theory and the advantages of using a more advanced beam theory for higher frequency vibrations.
ContributorsTschetter, Ryan William (Author) / Hjelmstad, Keith D. (Thesis advisor) / Rajan, Subramaniam D. (Committee member) / Mobasher, Barzin (Committee member) / Arizona State University (Publisher)
Created2016
154336-Thumbnail Image.png
Description
The need for sustainability in construction has encouraged scientists to develop novel environmentally friendly materials. The use of supplementary cementitious materials was one such initiative which aided in enhancing the fresh and hardened concrete properties. This thesis aims to explore the understanding of the early age rheological properties of such

The need for sustainability in construction has encouraged scientists to develop novel environmentally friendly materials. The use of supplementary cementitious materials was one such initiative which aided in enhancing the fresh and hardened concrete properties. This thesis aims to explore the understanding of the early age rheological properties of such cementitious systems.

The first phase of the work investigates the influence of supplementary cementitious materials (SCM) in combination with ordinary Portland cement (OPC) on the rheological properties of fresh paste with and without the effect of superplasticizers. Yield stress, plastic viscosity and storage modulus are the rheological parameters which were evaluated for all the design mixtures to fundamentally understand the synergistic effects of the SCM. A time-dependent study was conducted on these blends to explore the structure formation at various time intervals which explains the effect of hydration in conjecture to its physical stiffening. The second phase focuses on the rheological characterization of novel iron powder based binder system.

The results of this work indicate that the rheological characteristics of cementitious suspensions are complex, and strongly dependent on several key parameters including: the solid loading, inter-particle forces, shape of the particle, particle size distribution of the particles, and rheological nature of the media in which the particles are suspended. Chemical composition and reactivity of the material play an important role in the time-dependent rheological study.

A stress plateau method is utilized for the determination of rheological properties of concentrated suspensions, as it better predicts the apparent yield stress and is shown to correlate well with other viscoelastic properties of the suspensions. Plastic viscosity is obtained by calculating the slope of the stress-strain rate curve of ramp down values of shear rates. In oscillatory stress measurements the plateau obtained within the linear visco-elastic region was considered to be the value for storage modulus.

Between the different types of fly ash, class F fly ash indicated a reduction in the rheological parameters as opposed to class C fly ash that is attributable to the enhanced ettringite formation in the latter. Use of superplasticizer led to a huge influence on yield stress and storage modulus of the paste due to the steric hindrance effect.

In the study of iron based binder systems, metakaolin had comparatively higher influence than fly ash on the rheology due to its tendency to agglomerate as opposed to the ball bearing effect observed in the latter. Iron increment above 60% resulted in a decrease in all the parameters of rheology discussed in this thesis. In the OPC-iron binder, the iron behaved as reinforcements yielding higher yield stress and plastic viscosity.
ContributorsInbasekaran, Aditya (Author) / Neithalath, Narayanan (Thesis advisor) / Rajan, Subramaniam D. (Committee member) / Mobasher, Barzin (Committee member) / Arizona State University (Publisher)
Created2016
154997-Thumbnail Image.png
Description
As the demand of sustainable construction materials increases, use of fibers and textiles as partial or full reinforcement in concrete members present a tremendous opportunity. Proper characterization techniques and design guides for hybrid materials are therefore needed. This dissertation presents a comprehensive study on serviceability-based design of strain softening and

As the demand of sustainable construction materials increases, use of fibers and textiles as partial or full reinforcement in concrete members present a tremendous opportunity. Proper characterization techniques and design guides for hybrid materials are therefore needed. This dissertation presents a comprehensive study on serviceability-based design of strain softening and strain hardening materials. Multiple experimental procedures are developed to document the nature of single crack localization and multiple cracking mechanisms in various fiber and fabric reinforced cement-based composites. In addition, strain rate effects on the mechanical properties are examined using a high speed servo-hydraulic tension test equipment.

Significant hardening and degradation parameters such as stiffness, crack spacing, crack width, localized zone size are obtained from tensile tests using digital image correlation (DIC) technique. A tension stiffening model is used to simulate the tensile response that addresses the cracking and localization mechanisms. The model is also modified to simulate the sequential cracking in joint-free slabs on grade reinforced by steel fibers, where the lateral stiffness of slab and grade interface and stress-crack width response are the most important model parameters.

Parametric tensile and compressive material models are used to formulate generalized analytical solutions for flexural behaviors of hybrid reinforced concrete (HRC) that contains both rebars and fibers. Design recommendations on moment capacity, minimum reinforcement ratio etc. are obtained using analytical equations. The role of fiber in reducing the amount of conventional reinforcement is revealed. The approach is extended to T-sections and used to model Ultra High Performance Concrete (UHPC) beams and girders.

The analytical models are extended to structural members subjected to combined axial and bending actions. Analytical equations to address the P-M diagrams are derived. Closed-form equations that generate the interaction diagram of HRC section are presented which may be used in the design of multiple types of applications.

The theoretical models are verified by independent experimental results from literature. Reliability analysis using Monte Carlo simulation (MCS) is conducted for few design problems on ultimate state design. The proposed methodologies enable one to simulate the experiments to obtain material parameters and design structural members using generalized formulations.
ContributorsYao, Yiming (Author) / Mobasher, Barzin (Thesis advisor) / Underwood, Benjamin (Committee member) / Neithalath, Narayanan (Committee member) / Rajan, Subramaniam D. (Committee member) / Liu, Yongming (Committee member) / Arizona State University (Publisher)
Created2016
153545-Thumbnail Image.png
Description
For decades, microelectronics manufacturing has been concerned with failures related to electromigration phenomena in conductors experiencing high current densities. The influence of interconnect microstructure on device failures related to electromigration in BGA and flip chip solder interconnects has become a significant interest with reduced individual solder interconnect volumes. A survey

For decades, microelectronics manufacturing has been concerned with failures related to electromigration phenomena in conductors experiencing high current densities. The influence of interconnect microstructure on device failures related to electromigration in BGA and flip chip solder interconnects has become a significant interest with reduced individual solder interconnect volumes. A survey indicates that x-ray computed micro-tomography (µXCT) is an emerging, novel means for characterizing the microstructures' role in governing electromigration failures. This work details the design and construction of a lab-scale µXCT system to characterize electromigration in the Sn-0.7Cu lead-free solder system by leveraging in situ imaging.

In order to enhance the attenuation contrast observed in multi-phase material systems, a modeling approach has been developed to predict settings for the controllable imaging parameters which yield relatively high detection rates over the range of x-ray energies for which maximum attenuation contrast is expected in the polychromatic x-ray imaging system. In order to develop this predictive tool, a model has been constructed for the Bremsstrahlung spectrum of an x-ray tube, and calculations for the detector's efficiency over the relevant range of x-ray energies have been made, and the product of emitted and detected spectra has been used to calculate the effective x-ray imaging spectrum. An approach has also been established for filtering `zinger' noise in x-ray radiographs, which has proven problematic at high x-ray energies used for solder imaging. The performance of this filter has been compared with a known existing method and the results indicate a significant increase in the accuracy of zinger filtered radiographs.

The obtained results indicate the conception of a powerful means for the study of failure causing processes in solder systems used as interconnects in microelectronic packaging devices. These results include the volumetric quantification of parameters which are indicative of both electromigration tolerance of solders and the dominant mechanisms for atomic migration in response to current stressing. This work is aimed to further the community's understanding of failure-causing electromigration processes in industrially relevant material systems for microelectronic interconnect applications and to advance the capability of available characterization techniques for their interrogation.
ContributorsMertens, James Charles Edwin (Author) / Chawla, Nikhilesh (Thesis advisor) / Alford, Terry (Committee member) / Jiao, Yang (Committee member) / Neithalath, Narayanan (Committee member) / Arizona State University (Publisher)
Created2015