Matching Items (30)
Filtering by

Clear all filters

152764-Thumbnail Image.png
Description
Within the last decade there has been remarkable interest in single-cell metabolic analysis as a key technology for understanding cellular heterogeneity, disease initiation, progression, and drug resistance. Technologies have been developed for oxygen consumption rate (OCR) measurements using various configurations of microfluidic devices. The technical challenges of current approaches include:

Within the last decade there has been remarkable interest in single-cell metabolic analysis as a key technology for understanding cellular heterogeneity, disease initiation, progression, and drug resistance. Technologies have been developed for oxygen consumption rate (OCR) measurements using various configurations of microfluidic devices. The technical challenges of current approaches include: (1) deposition of multiple sensors for multi-parameter metabolic measurements, e.g. oxygen, pH, etc.; (2) tedious and labor-intensive microwell array fabrication processes; (3) low yield of hermetic sealing between two rigid fused silica parts, even with a compliance layer of PDMS or Parylene-C. In this thesis, several improved microfabrication technologies are developed and demonstrated for analyzing multiple metabolic parameters from single cells, including (1) a modified "lid-on-top" configuration with a multiple sensor trapping (MST) lid which spatially confines multiple sensors to micro-pockets enclosed by lips for hermetic sealing of wells; (2) a multiple step photo-polymerization method for patterning three optical sensors (oxygen, pH and reference) on fused silica and on a polyethylene terephthalate (PET) surface; (3) a photo-polymerization method for patterning tri-color (oxygen, pH and reference) optical sensors on both fused silica and on the PET surface; (4) improved KMPR/SU-8 microfabrication protocols for fabricating microwell arrays that can withstand cell culture conditions. Implementation of these improved microfabrication methods should address the aforementioned challenges and provide a high throughput and multi-parameter single cell metabolic analysis platform.
ContributorsSong, Ganquan (Author) / Meldrum, Deirdre R (Thesis advisor) / Goryll, Michael (Committee member) / Wang, Hong (Committee member) / Tian, Yanqing (Committee member) / Arizona State University (Publisher)
Created2014
153272-Thumbnail Image.png
Description
Hydrogen sulfide (H2S) has been identified as a potential ingredient for grain boundary passivation of multicrystalline silicon. Sulfur is already established as a good surface passivation material for crystalline silicon (c-Si). Sulfur can be used both from solution and hydrogen sulfide gas. For multicrystalline silicon (mc-Si) solar cells, increasing efficiency

Hydrogen sulfide (H2S) has been identified as a potential ingredient for grain boundary passivation of multicrystalline silicon. Sulfur is already established as a good surface passivation material for crystalline silicon (c-Si). Sulfur can be used both from solution and hydrogen sulfide gas. For multicrystalline silicon (mc-Si) solar cells, increasing efficiency is a major challenge because passivation of mc-Si wafers is more difficult due to its randomly orientated crystal grains and the principal source of recombination is contributed by the defects in the bulk of the wafer and surface.

In this work, a new technique for grain boundary passivation for multicrystalline silicon using hydrogen sulfide has been developed which is accompanied by a compatible Aluminum oxide (Al2O3) surface passivation. Minority carrier lifetime measurement of the passivated samples has been performed and the analysis shows that success has been achieved in terms of passivation and compared to already existing hydrogen passivation, hydrogen sulfide passivation is actually better. Also the surface passivation by Al2O3 helps to increase the lifetime even more after post-annealing and this helps to attain stability for the bulk passivated samples. Minority carrier lifetime is directly related to the internal quantum efficiency of solar cells. Incorporation of this technique in making mc-Si solar cells is supposed to result in higher efficiency cells. Additional research is required in this field for the use of this technique in commercial solar cells.
ContributorsSaha, Arunodoy, Ph.D (Author) / Tao, Meng (Thesis advisor) / Vasileska, Dragica (Committee member) / Goryll, Michael (Committee member) / Arizona State University (Publisher)
Created2014
151166-Thumbnail Image.png
Description
High Pressure Superheater 1 (HPSH1) is the first heat exchange tube bank inside the Heat Recovery Steam Generator (HRSG) to encounter exhaust flue gas from the gas turbine of a Combined Cycle Power Plant. Steam flowing through the HPSH1 gains heat from the flue gas prior to entering the steam

High Pressure Superheater 1 (HPSH1) is the first heat exchange tube bank inside the Heat Recovery Steam Generator (HRSG) to encounter exhaust flue gas from the gas turbine of a Combined Cycle Power Plant. Steam flowing through the HPSH1 gains heat from the flue gas prior to entering the steam turbine. During cold start-ups, rapid temperature changes in operating condition give rise to significant temperature gradients in the thick-walled components of HPSH1 (manifolds, links, and headers). These temperature gradients produce thermal-structural stresses in the components. The resulting high cycle fatigue is a major concern as this can lead to premature failure of the components. The main objective of this project was to address the thermal-structural stress field induced in HPSH1 during a typical cold start-up transient. To this end, computational fluid dynamics (CFD) was used to carry out the thermal-fluid analysis of HPSH1. The calculated temperature distributions in the component walls were the primary inputs for the finite element (FEA) model that performed structural analysis. Thermal-structural analysis was initially carried out at full-load steady state condition in order to gain confidence in the CFD and FEA methodologies. Results of the full-load steady state thermal-fluid analysis were found in agreement with the temperature values measured at specific locations on the outer surfaces of the inlet links and outlet manifold. It was found from the subsequent structural analysis that peak effective stresses were located at the connecting regions of the components and were well below the allowed stress values. Higher temperature differences were observed between the thick-walled HPSH1 components during the cold start-up transient as compared to the full-load steady state operating condition. This was because of the rapid temperature changes that occurred, especially in the steam temperature at the HPSH1 entry, and the different rates of heating or cooling for components with different wall thicknesses. Results of the transient thermal-fluid analysis will be used in future to perform structural analysis of the HPSH1. The developed CFD and FEA models are capable of analyzing various other transients (e.g., hot start-up and shut-down) and determine their influence on the durability of plant components.
ContributorsHardeep Singh (Author) / Roy, Ramendra P. (Thesis advisor) / Lee, Taewoo (Thesis advisor) / Mignolet, Marc (Committee member) / Arizona State University (Publisher)
Created2012
150547-Thumbnail Image.png
Description
This dissertation presents methods for addressing research problems that currently can only adequately be solved using Quality Reliability Engineering (QRE) approaches especially accelerated life testing (ALT) of electronic printed wiring boards with applications to avionics circuit boards. The methods presented in this research are generally applicable to circuit boards, but

This dissertation presents methods for addressing research problems that currently can only adequately be solved using Quality Reliability Engineering (QRE) approaches especially accelerated life testing (ALT) of electronic printed wiring boards with applications to avionics circuit boards. The methods presented in this research are generally applicable to circuit boards, but the data generated and their analysis is for high performance avionics. Avionics equipment typically requires 20 years expected life by aircraft equipment manufacturers and therefore ALT is the only practical way of performing life test estimates. Both thermal and vibration ALT induced failure are performed and analyzed to resolve industry questions relating to the introduction of lead-free solder product and processes into high reliability avionics. In chapter 2, thermal ALT using an industry standard failure machine implementing Interconnect Stress Test (IST) that simulates circuit board life data is compared to real production failure data by likelihood ratio tests to arrive at a mechanical theory. This mechanical theory results in a statistically equivalent energy bound such that failure distributions below a specific energy level are considered to be from the same distribution thus allowing testers to quantify parameter setting in IST prior to life testing. In chapter 3, vibration ALT comparing tin-lead and lead-free circuit board solder designs involves the use of the likelihood ratio (LR) test to assess both complete failure data and S-N curves to present methods for analyzing data. Failure data is analyzed using Regression and two-way analysis of variance (ANOVA) and reconciled with the LR test results that indicating that a costly aging pre-process may be eliminated in certain cases. In chapter 4, vibration ALT for side-by-side tin-lead and lead-free solder black box designs are life tested. Commercial models from strain data do not exist at the low levels associated with life testing and need to be developed because testing performed and presented here indicate that both tin-lead and lead-free solders are similar. In addition, earlier failures due to vibration like connector failure modes will occur before solder interconnect failures.
ContributorsJuarez, Joseph Moses (Author) / Montgomery, Douglas C. (Thesis advisor) / Borror, Connie M. (Thesis advisor) / Gel, Esma (Committee member) / Mignolet, Marc (Committee member) / Pan, Rong (Committee member) / Arizona State University (Publisher)
Created2012
154014-Thumbnail Image.png
Description
Biosensors aiming at detection of target analytes, such as proteins, microbes, virus, and toxins, are widely needed for various applications including detection of chemical and biological warfare (CBW) agents, biomedicine, environmental monitoring, and drug screening. Surface Plasmon Resonance (SPR), as a surface-sensitive analytical tool, can very sensitively respond to minute

Biosensors aiming at detection of target analytes, such as proteins, microbes, virus, and toxins, are widely needed for various applications including detection of chemical and biological warfare (CBW) agents, biomedicine, environmental monitoring, and drug screening. Surface Plasmon Resonance (SPR), as a surface-sensitive analytical tool, can very sensitively respond to minute changes of refractive index occurring adjacent to a metal film, offering detection limits up to a few ppt (pg/mL). Through SPR, the process of protein adsorption may be monitored in real-time, and transduced into an SPR angle shift. This unique technique bypasses the time-consuming, labor-intensive labeling processes, such as radioisotope and fluorescence labeling. More importantly, the method avoids the modification of the biomarker’s characteristics and behaviors by labeling that often occurs in traditional biosensors. While many transducers, including SPR, offer high sensitivity, selectivity is determined by the bio-receptors. In traditional biosensors, the selectivity is provided by bio-receptors possessing highly specific binding affinity to capture target analytes, yet their use in biosensors are often limited by their relatively-weak binding affinity with analyte, non-specific adsorption, need for optimization conditions, low reproducibility, and difficulties integrating onto the surface of transducers. In order to circumvent the use of bio-receptors, the competitive adsorption of proteins, termed the Vroman effect, is utilized in this work. The Vroman effect was first reported by Vroman and Adams in 1969. The competitive adsorption targeted here occurs among different proteins competing to adsorb to a surface, when more than one type of protein is present. When lower-affinity proteins are adsorbed on the surface first, they can be displaced by higher-affinity proteins arriving at the surface at a later point in time. Moreover, only low-affinity proteins can be displaced by high-affinity proteins, typically possessing higher molecular weight, yet the reverse sequence does not occur. The SPR biosensor based on competitive adsorption is successfully demonstrated to detect fibrinogen and thyroglobulin (Tg) in undiluted human serum and copper ions in drinking water through the denatured albumin.
ContributorsWang, Ran (Author) / Chae, Junseok (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Tsow, Tsing (Committee member) / Goryll, Michael (Committee member) / Arizona State University (Publisher)
Created2015
156057-Thumbnail Image.png
Description
The stability of nanocrystalline microstructural features allows structural materials to be synthesized and tested in ways that have heretofore been pursued only on a limited basis, especially under dynamic loading combined with temperature effects. Thus, a recently developed, stable nanocrystalline alloy is analyzed here for quasi-static (<100 s-1) and dynamic

The stability of nanocrystalline microstructural features allows structural materials to be synthesized and tested in ways that have heretofore been pursued only on a limited basis, especially under dynamic loading combined with temperature effects. Thus, a recently developed, stable nanocrystalline alloy is analyzed here for quasi-static (<100 s-1) and dynamic loading (103 to 104 s-1) under uniaxial compression and tension at multiple temperatures ranging from 298-1073 K. After mechanical tests, microstructures are analyzed and possible deformation mechanisms are proposed. Following this, strain and strain rate history effects on mechanical behavior are analyzed using a combination of quasi-static and dynamic strain rate Bauschinger testing. The stable nanocrystalline material is found to exhibit limited flow stress increase with increasing strain rate as compared to that of both pure, coarse grained and nanocrystalline Cu. Further, the material microstructural features, which includes Ta nano-dispersions, is seen to pin dislocation at quasi-static strain rates, but the deformation becomes dominated by twin nucleation at high strain rates. These twins are pinned from further growth past nucleation by the Ta nano-dispersions. Testing of thermal and load history effects on the mechanical behavior reveals that when thermal energy is increased beyond 200 °C, an upturn in flow stress is present at strain rates below 104 s-1. However, in this study, this simple assumption, established 50-years ago, is shown to break-down when the average grain size and microstructural length-scale is decreased and stabilized below 100nm. This divergent strain-rate behavior is attributed to a unique microstructure that alters slip-processes and their interactions with phonons; thus enabling materials response with a constant flow-stress even at extreme conditions. Hence, the present study provides a pathway for designing and synthesizing a new-level of tough and high-energy absorbing materials.
ContributorsTurnage, Scott Andrew (Author) / Solanki, Kiran N (Thesis advisor) / Rajagopalan, Jagannathan (Committee member) / Peralta, Pedro (Committee member) / Darling, Kristopher A (Committee member) / Mignolet, Marc (Committee member) / Arizona State University (Publisher)
Created2017
155922-Thumbnail Image.png
Description
Total dose sensing systems (or radiation detection systems) have many applications,

ranging from survey monitors used to supervise the generated radioactive waste at

nuclear power plants to personal dosimeters which measure the radiation dose

accumulated in individuals. This dissertation work will present two different types of

novel devices developed at Arizona State University for

Total dose sensing systems (or radiation detection systems) have many applications,

ranging from survey monitors used to supervise the generated radioactive waste at

nuclear power plants to personal dosimeters which measure the radiation dose

accumulated in individuals. This dissertation work will present two different types of

novel devices developed at Arizona State University for total dose sensing applications.

The first detector technology is a mechanically flexible metal-chalcogenide glass (ChG)

based system which is fabricated on low cost substrates and are intended as disposable

total dose sensors. Compared to existing commercial technologies, these thin film

radiation sensors are simpler in form and function, and cheaper to produce and operate.

The sensors measure dose through resistance change and are suitable for applications

such as reactor dosimetry, radiation chemistry, and clinical dosimetry. They are ideal for

wearable devices due to the lightweight construction, inherent robustness to resist

breaking when mechanically stressed, and ability to attach to non-flat objects. Moreover,

their performance can be easily controlled by tuning design variables and changing

incorporated materials. The second detector technology is a wireless dosimeter intended

for remote total dose sensing. They are based on a capacitively loaded folded patch

antenna resonating in the range of 3 GHz to 8 GHz for which the load capacitance varies

as a function of total dose. The dosimeter does not need power to operate thus enabling

its use and implementation in the field without requiring a battery for its read-out. As a

result, the dosimeter is suitable for applications such as unattended detection systems

destined for covert monitoring of merchandise crossing borders, where nuclear material

tracking is a concern. The sensitive element can be any device exhibiting a known

variation of capacitance with total ionizing dose. The sensitivity of the dosimeter is

related to the capacitance variation of the radiation sensitive device as well as the high

frequency system used for reading. Both technologies come with the advantage that they

are easy to manufacture with reasonably low cost and sensing can be readily read-out.
ContributorsMahmud, Adnan, Ph.D (Author) / Barnaby, Hugh J. (Thesis advisor) / Kozicki, Michael N (Committee member) / Gonzalez-Velo, Yago (Committee member) / Goryll, Michael (Committee member) / Alford, Terry (Committee member) / Arizona State University (Publisher)
Created2017
156861-Thumbnail Image.png
Description
In this project, current-voltage (I-V) and Deep Level Transient Spectroscopy (DLTS) measurements are used to (a) characterize the electrical properties of Nb/p-type Si Schottky barriers, (b) identify the concentration and physical character of the electrically active defects present in the depletion region, and (c) use thermal processing to reduce the

In this project, current-voltage (I-V) and Deep Level Transient Spectroscopy (DLTS) measurements are used to (a) characterize the electrical properties of Nb/p-type Si Schottky barriers, (b) identify the concentration and physical character of the electrically active defects present in the depletion region, and (c) use thermal processing to reduce the concentration or eliminate the defects. Barrier height determinations using temperature-dependent I-V measurements indicate that the barrier height decreases from 0.50 eV to 0.48 eV for anneals above 200 C. The electrically-active defect concentration measured using DLTS (deep level transient spectroscopy) drops markedly after anneals at 250 C.

A significant increase in leakage currents is almost always observed in near-ideal devices upon annealing. In contrast, non-ideal devices dominated by leakage currents annealed at 150 C to 250 C exhibit a significant decrease in such currents.
ContributorsKrishna Murthy, Madhu (Author) / Newman, Nathan (Thesis advisor) / Goryll, Michael (Committee member) / Alford, Terry (Committee member) / Arizona State University (Publisher)
Created2018
156927-Thumbnail Image.png
Description
This paper describes an effort to bring wing structural stiffness and aeroelastic considerations early in the conceptual design process with an automated tool. Stiffness and aeroelasticity can be well represented with a stochastic model during conceptual design because of the high level of uncertainty and variability in wing non-structural mass

This paper describes an effort to bring wing structural stiffness and aeroelastic considerations early in the conceptual design process with an automated tool. Stiffness and aeroelasticity can be well represented with a stochastic model during conceptual design because of the high level of uncertainty and variability in wing non-structural mass such as fuel loading and control surfaces. To accomplish this, an improvement is made to existing design tools utilizing rule based automated design to generate wing torque box geometry from a specific wing outer mold-line. Simple analysis on deflection and inferred stiffness shows how early conceptual design choices can strongly impact the stiffness of the structure. The impacts of design choices and how the buckling constraints drive structural weight in particular examples are discussed. The model is then carried further to include a finite element model (FEM) to analyze resulting mode shapes and frequencies for use in aeroelastic analysis. The natural frequencies of several selected wing torque boxes across a range of loading cases are compared.
ContributorsMiskin, Daniel L (Author) / Takahashi, Timothy T (Thesis advisor) / Mignolet, Marc (Committee member) / Murthy, Raghavendra (Committee member) / Arizona State University (Publisher)
Created2018
156952-Thumbnail Image.png
Description
Robotic swarms can potentially perform complicated tasks such as exploration and mapping at large space and time scales in a parallel and robust fashion. This thesis presents strategies for mapping environmental features of interest – specifically obstacles, collision-free paths, generating a metric map and estimating scalar density fields– in an

Robotic swarms can potentially perform complicated tasks such as exploration and mapping at large space and time scales in a parallel and robust fashion. This thesis presents strategies for mapping environmental features of interest – specifically obstacles, collision-free paths, generating a metric map and estimating scalar density fields– in an unknown domain using data obtained by a swarm of resource-constrained robots. First, an approach was developed for mapping a single obstacle using a swarm of point-mass robots with both directed and random motion. The swarm population dynamics are modeled by a set of advection-diffusion-reaction partial differential equations (PDEs) in which a spatially-dependent indicator function marks the presence or absence of the obstacle in the domain. The indicator function is estimated by solving an optimization problem with PDEs as constraints. Second, a methodology for constructing a topological map of an unknown environment was proposed, which indicates collision-free paths for navigation, from data collected by a swarm of finite-sized robots. As an initial step, the number of topological features in the domain was quantified by applying tools from algebraic topology, to a probability function over the explored region that indicates the presence of obstacles. A topological map of the domain is then generated using a graph-based wave propagation algorithm. This approach is further extended, enabling the technique to construct a metric map of an unknown domain with obstacles using uncertain position data collected by a swarm of resource-constrained robots, filtered using intensity measurements of an external signal. Next, a distributed method was developed to construct the occupancy grid map of an unknown environment using a swarm of inexpensive robots or mobile sensors with limited communication. In addition to this, an exploration strategy which combines information theoretic ideas with Levy walks was also proposed. Finally, the problem of reconstructing a two-dimensional scalar field using observations from a subset of a sensor network in which each node communicates its local measurements to its neighboring nodes was addressed. This problem reduces to estimating the initial condition of a large interconnected system with first-order linear dynamics, which can be solved as an optimization problem.
ContributorsRamachandran, Ragesh Kumar (Author) / Berman, Spring M (Thesis advisor) / Mignolet, Marc (Committee member) / Artemiadis, Panagiotis (Committee member) / Marvi, Hamid (Committee member) / Robinson, Michael (Committee member) / Arizona State University (Publisher)
Created2018